Characterization of the Capillary Properties of Gas Diffusion Media

  • Jeffrey T. Gostick
  • Marios A. Ioannidis
  • Michael W. Fowler
  • Mark D. Pritzker
Part of the Modern Aspects of Electrochemistry book series (MAOE)


The present generation of membrane materials used in polymer electrolyte membrane fuel cells (PEMFCs) requires high humidity to maintain sufficient proton conductivity. Mass transport through the porous electrodes, however, is most effective in dry conditions since the presence of liquid water in the pores reduces effective oxygen diffusivity to the catalytic sites. Management of these competing requirements is further complicated by the production of water inside the cell as a by-product of the cathode reaction. Maximizing fuel cell power density therefore requires effective water management techniques to prevent excessive liquid water from accumulating in the porous electrode components. Liquid water distribution and flow in the cathode gas diffusion media (GDM) of an operating PEMFC is critically affected by capillary forces. Perhaps the most widely employed technique for improving water management is to impregnate the fibrous GDM with a polymer, such as poly-tetra-fluoro-ethylene (PTFE), to coat the carbon fibers and thereby render the GDM more hydrophobic. It is thus important to understand the relationship between wettability and capillary properties of native (i.e., untreated) or PTFE-treated GDMs on the one hand and the relationship between GDM capillary properties and fuel cell performance on the other hand. Until recently, however, few experimental techniques were available to measure the capillary properties of GDMs. This chapter discusses the present understanding of the capillary properties of GDM–water–air systems and provides a critical analysis of reported experimental techniques that have recently contributed to this understanding.


Contact Angle Capillary Pressure Water Saturation Water Injection Water Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Z.H. Wang, C.Y. Wang, K.S. Chen, J. Power Sources 94, 40 (2001)CrossRefGoogle Scholar
  2. 2.
    C.Y. Wang, Z.H. Wang, Y. Pan, ASME HTD 364, 351 (1999)Google Scholar
  3. 3.
    W. He, J.S. Yi, T.V. Nguyen, AlChE J. 46, 2053 (2000)CrossRefGoogle Scholar
  4. 4.
    M.C. Leverett, AIME – Petro. Dev. Tech. 142, 152 (1941)Google Scholar
  5. 5.
    W. Rose, W.A. Bruce, Trans AIME 186, 127 (1949)Google Scholar
  6. 6.
    F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic Press, New York, 1992)Google Scholar
  7. 7.
    K.S. Udell, Int. J. Heat Mass Transfer 28, 485 (1985)CrossRefGoogle Scholar
  8. 8.
    J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Electrochem. Commun. 10, 1520 (2008)CrossRefGoogle Scholar
  9. 9.
    J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, J. Power Sources 173, 277 (2007)CrossRefGoogle Scholar
  10. 10.
    D. Mattia, H.H. Ban, Y. Gogotsi, Langmuir 22, 1789 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Yan, X. Xiao, I. Kulaots, B.W. Sheldon, R.H. Hurt, Carbon 44, 3116 (2006)CrossRefGoogle Scholar
  12. 12.
    A.W. Adamson, A.P. Gast, Physical Chemistry of Surfaces (Wiley, New York, 1997)Google Scholar
  13. 13.
    N.R. Morrow, J. Can. Pet. Technol. 15, 49 (1976)Google Scholar
  14. 14.
    S. Goswami, S. Klaus, J. Benziger, Langmuir 24, 8627 (2008)CrossRefGoogle Scholar
  15. 15.
    A.Z. Weber, R.M. Darling, J. Newman, J. Electrochem. Soc. 151, A1715 (2004)CrossRefGoogle Scholar
  16. 16.
    J.T. Gostick, M.W. Fowler, M.A. Ioannidis, M.D. Pritzker, Y.M. Volfkovich, A. Sakars, J. Power Sources 156, 375 (2006)CrossRefGoogle Scholar
  17. 17.
    R.P. Ramasamy, E.C. Kumbur, M.M. Mench, W. Liu, D. Moore, M. Murthy, Int. J. Hydrogen Energy 33, 3351 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Park, B.N. Popov, Electrochim. Acta 54, 3473 (2009)Google Scholar
  19. 19.
    P.K. Sinha, C.Y. Wang, Chem. Eng. Sci. 63, 1081 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, J. Membrane Sci. 261, 98 (2005)CrossRefGoogle Scholar
  21. 21.
    J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, J. Power Sources 194, 433 (2009)Google Scholar
  22. 22.
    A. Defay, I. Prigogine, A. Bellemans, Surface Tension and Adsorption (Wiley, New York, 1966)Google Scholar
  23. 23.
    R. Finn, Equilibrium Capillary Surfaces (Springer, New York, 1986)Google Scholar
  24. 24.
    J.C. Melrose, Ind. Eng. Chem. 60, 53 (1968)CrossRefGoogle Scholar
  25. 25.
    W.G. Anderson, J. Petro. Tech. 39, 1283 (1987)Google Scholar
  26. 26.
    W.G. Anderson, J. Petro. Tech. 38, 1246 (1986)Google Scholar
  27. 27.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, F.B. Pyatt, S.H. Doerr, Appl. Phys. Lett. 89, 9 (2006)Google Scholar
  28. 28.
    J.C. Melrose, SPE J 5, 259 (1965)Google Scholar
  29. 29.
    N.R. Morrow, Ind. Eng. Chem. 62, 32 (1970)CrossRefGoogle Scholar
  30. 30.
    D. Wilkinson, J.F. Willemsen, J Phys A-Math Gen 16, 3365 (1983)CrossRefGoogle Scholar
  31. 31.
    R. Lenormand, E. Touboul, C. Zarcone, J. Fluid Mech. 189, 165 (1988)CrossRefGoogle Scholar
  32. 32.
    O. Chapuis, M. Prat, M. Quintard, E. Chane-Kane, O. Guillot, N. Mayer, J. Power Sources 178, 258 (2008)CrossRefGoogle Scholar
  33. 33.
    M.A. Ioannidis, I. Chatzis, J. Colloid Interface Sci. 161, 278 (1993)CrossRefGoogle Scholar
  34. 34.
    R. Lenormand, C. Zarcone, A. Sarr, J. Fluid Mech. 135, 337 (1983)CrossRefGoogle Scholar
  35. 35.
    Y. Li, N.C. Wardlaw, J. Colloid Interface Sci. 109, 473 (1986)CrossRefGoogle Scholar
  36. 36.
    M.A. Ioannidis, I. Chatzis, A.C. Payatakes, J. Colloid Interface Sci. 143, 22 (1991)CrossRefGoogle Scholar
  37. 37.
    C.D. Tsakiroglou, A.C. Payatakes, Adv. Colloid Interface Sci. 75, 215 (1998)CrossRefGoogle Scholar
  38. 38.
    V. Joekar, S.M. Hassanizadeh, L.J. Pyrak-Nolte, C. Berensten, Water Resour. Res. 45, W02430 (2009)Google Scholar
  39. 39.
    Y. Li, N.C. Wardlaw, J. Colloid Interface Sci. 109, 461 (1986)CrossRefGoogle Scholar
  40. 40.
    J.D. Fairweather, P. Cheung, J. St Pierre, D.T. Schwartz, Electrochem. Commun. 9, 2340 (2007)CrossRefGoogle Scholar
  41. 41.
    Y.M. Volfkovich, V.S. Bagotzky, J. Power Sources 48, 327 (1994)CrossRefGoogle Scholar
  42. 42.
    Y.M. Volfkovich, V.S. Bagotzky, J. Power Sources 48, 339 (1994)CrossRefGoogle Scholar
  43. 43.
    Y.M. Volfkovich, V.S. Bagotzky, V.E. Sosenkin, I.A. Blinov, Colloids Surf. A 187–188, 349 (2001)CrossRefGoogle Scholar
  44. 44.
    I.N. Tsimpanogiannis, Y.C. Yortsos, S. Poulou, N. Kanellopoulos, A.K. Stubos, Phys. Rev. E 59, 4353 (1999)CrossRefGoogle Scholar
  45. 45.
    E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154, B1295 (2007)CrossRefGoogle Scholar
  46. 46.
    E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154, B1305 (2007)CrossRefGoogle Scholar
  47. 47.
    E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Electrochem. Soc. 154, B1315 (2007)CrossRefGoogle Scholar
  48. 48.
    E.C. Kumbur, K.V. Sharp, M.M. Mench, J. Power Sources 176, 191 (2008)CrossRefGoogle Scholar
  49. 49.
    Y.M. Volfkovich, V.E. Sosenkin, N.F. Nikol’skaya, T.L. Kulova, Russ. J. Electrochem. 44, 278 (2008)CrossRefGoogle Scholar
  50. 50.
    K.G. Gallagher, R.M. Darling, T.W. Patterson, M.L. Perry, J. Electrochem. Soc. 155, B1225 (2008)CrossRefGoogle Scholar
  51. 51.
    D. Rensink, S. Fell, J. Roth, in Proceedings of the Sixth International Conference on Nanochannels, Microchannels and Minichannels, Darmstadt, Germany, 23–25 June 2008, pp. 1–7Google Scholar
  52. 52.
    H.H. Yuan, B.F. Swanson, SPE Formation Evaluation 4, 17 (1989)CrossRefGoogle Scholar
  53. 53.
    P.G. Toledo, L.E. Scriven, H.T. Davis, SPE Formation Evaluation 9, 46 (1994)Google Scholar
  54. 54.
    M.A. Knackstedt, A.P. Sheppard, W.V. Pinczewski, Phys. Rev. E 58, R6923 (1998)CrossRefGoogle Scholar
  55. 55.
    J. Sole, M.W. Ellis, in Proceedings of the 6th International Conference on Fuel Cell Science, Engineering and Technology, Denver, CO, 16–18 June 2008, pp. 829–840Google Scholar
  56. 56.
    I.R. Harkness, N. Hussain, L. Smith, J.D.B. Sharman, J. Power Sources 193, 122 (2009)Google Scholar
  57. 57.
    T.V. Nguyen, G. Lin, H. Ohn, X. Wang, Electrochem. Solid-State Lett. 11, B127 (2008)CrossRefGoogle Scholar
  58. 58.
    T. Koido, T. Furusawa, K. Moriyama, J. Power Sources 175, 127 (2008)CrossRefGoogle Scholar
  59. 59.
    P. Cheung, J.D. Fairweather, D.T. Schwartz, J. Power Sources 187, 487 (2009)CrossRefGoogle Scholar
  60. 60.
    M. Gladkikh, S. Bryant, J. Colloid Interface Sci. 288, 526 (2005)CrossRefGoogle Scholar
  61. 61.
    A.Z. Weber, R.M. Darling, J. Power Sources 168, 191 (2007)CrossRefGoogle Scholar
  62. 62.
    S. Litster, C.R. Buie, T. Fabian, J.K. Eaton, J.G. Santiago, J. Electrochem. Soc. 154, B1049 (2007)CrossRefGoogle Scholar
  63. 63.
    M.F. Mathias, J. Roth, J. Fleming, W. Lehnert, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Vol. 3, Part 1, ed. by W. Vielstich, H.A. Gasteiger, A. Lamm (Wily, New York, 2003), pp. 517–537Google Scholar
  64. 64.
    A.Z. Weber, M.A. Hickner, Electrochim. Acta 53, 7668 (2008)CrossRefGoogle Scholar
  65. 65.
    D. Spernjak, A.K. Prasad, S.G. Advani, J. Power Sources 170, 334 (2007)CrossRefGoogle Scholar
  66. 66.
    E. Kimball, T. Whitaker, Y.G. Kevrekidis, J.B. Benziger, AlChE J. 54, 1313 (2008)CrossRefGoogle Scholar
  67. 67.
    A. Bazylak, D. Sinton, N. Djilali, J. Power Sources 176, 240 (2008)CrossRefGoogle Scholar
  68. 68.
    J.T. Gostick, M.A. Ioannidis, M.W. Fowler, M.D. Pritzker, Electrochem. Commun. 11, 576 (2009)CrossRefGoogle Scholar
  69. 69.
    F.N. Buchi, R. Fluckiger, D. Tehlar, F. Marnoe, M. Stampanoni, ECS Transactions 16, 587 (2008)CrossRefGoogle Scholar
  70. 70.
    R.G. Larson, N.R. Morrow, Powder Technol. 30, 123 (1981)CrossRefGoogle Scholar
  71. 71.
    H.K. Atiyeh, K. Karan, B. Peppley, A. Phoenix, E. Halliop, J. Pharoah, J. Power Sources 170, 111 (2007)CrossRefGoogle Scholar
  72. 72.
    J.H. Nam, M. Kaviany, Int. J. Heat Mass Transfer 46, 4595 (2003)CrossRefGoogle Scholar
  73. 73.
    U. Pasaogullari, C.Y. Wang, Electrochim. Acta 49, 4359 (2004)CrossRefGoogle Scholar
  74. 74.
    U. Pasaogullari, C.Y. Wang, K.S. Chen, J. Electrochem. Soc. 152, A1574 (2005)CrossRefGoogle Scholar
  75. 75.
    A.Z. Weber, J. Newman, J. Electrochem. Soc. 152, A677 (2005)CrossRefGoogle Scholar
  76. 76.
    J.H. Nam, K.-J. Lee, G.-S. Hwang, C.-J. Kim, M. Kaviany, Int. J. Heat Mass Transfer 52, 2779 (2009)Google Scholar
  77. 77.
    X.G. Yang, F.Y. Zhang, A.L. Lubawy, C.Y. Wang, Electrochem. Solid-State Lett. 7, A408 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jeffrey T. Gostick
    • 1
  • Marios A. Ioannidis
    • 2
  • Michael W. Fowler
    • 2
  • Mark D. Pritzker
    • 2
  1. 1.Department of Chemical EngineeringMcGill UniversityMontrealCanada
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations