Advertisement

Magnetic Resonance Imaging and Tunable Diode Laser Absorption Spectroscopy for In-Situ Water Diagnostics in Polymer Electrolyte Membrane Fuel Cells

  • Shohji Tsushima
  • Shuichiro Hirai
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Abstract

Magnetic resonance imaging (MRI) and tunable diode laser absorption spectroscopy (TDLAS) are focused as novel diagnostic techniques for in-situ measurement of water in operating polymer electrolyte membrane fuel cells (PEMFCs). Basic principle and practical applications of MRI to visualize water content distribution in polymer electrolyte membranes (PEMs) are described. It is shown that MRI visualization gives us fundamental understandings on water transport processes involved in PEMFCs. In-situ TDLAS measurement technique is also presented as a diagnostic tool to evaluate variation of water vapor concentration in gas flow channels in PEMFCs. TDLAS measurement in combination with numerical analysis can be used to obtain local current density distribution and local water transfer numbers across the membrane. Recent advances and future prospects on MRI and TDLAS as in-situ diagnostic technique for water transport in operational PEMFCs are summarized.

Keywords

Membrane Electrode Assembly Polymer Electrolyte Membrane Water Vapor Concentration Polymer Electrolyte Membrane Fuel Cell Radio Frequency Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

REFERENCES

  1. 1.
    T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 140, 1041 (1993)CrossRefGoogle Scholar
  2. 2.
    E. Endoh, ECS Trans. 3(1), 9 (2006)CrossRefGoogle Scholar
  3. 3.
    J.Y. Shim, S. Tsushima, S. Hirai, ECS Trans. 11(1), 1151 (2007)CrossRefGoogle Scholar
  4. 4.
    Y. Tabuchi, N. Kubo, in 6th International Fuel Cell Science, Engineering and Technology conference (2008), FuelCell2008-65201, DENVER, CO, 16–18 June 2008Google Scholar
  5. 5.
    S.H. Ge, X.G. Li, B.L. Yi, I.M. Hsing, J. Electrochem. Soc. 152 (2005) A1149CrossRefGoogle Scholar
  6. 6.
    P.W. Majsztrik, M.B. Satterfield, A.B. Bocarsly, J.B. Benziger, J. Memb. Sci. 301 (2007) 93CrossRefGoogle Scholar
  7. 7.
    K.W. Feindel, L.P.A. LaRocque, D. Starke, S.H. Bergens, R.E. Wasylishen, J. Am. Chem. Soc. 126, 11436 (2004)CrossRefGoogle Scholar
  8. 8.
    K.W. Feindel, S.H. Bergens, R.E. Wasylishen, Chem. Phys. Chem. 7, 67 (2006)CrossRefGoogle Scholar
  9. 9.
    K.W. Feindel, S.H. Bergens, R.E. Wasylishen, J. Am. Chem. Soc. 128, 14192 (2006)CrossRefGoogle Scholar
  10. 10.
    K.W. Feindel, S.H. Bergens, R.E. Wasylishen, Phys. Chem. Chem. Phys. 9, 1850 (2007)CrossRefGoogle Scholar
  11. 11.
    K.R. Minard, V.V. Viswanathan, P.D. Majors, L.Q. Wang, P.C. Rieke, J. Power Sources 161, 856 (2006)CrossRefGoogle Scholar
  12. 12.
    Z.W. Dunbar, R.I. Masel, J. Power Sources 171, 678 (2007)CrossRefGoogle Scholar
  13. 13.
    Z.W. Dunbar, R.I. Masel, J. Power Sources 182, 76 (2008)CrossRefGoogle Scholar
  14. 14.
    Z.W. Dunbar, R.I. Masel, ECS Trans. 16(2), 1001 (2008)CrossRefGoogle Scholar
  15. 15.
    Z. Zhang, J. Martin, J. Wu, H. Wang, K. Promislow, B.J. Balcom, J. Magn. Reson. 193, 259 (2008)CrossRefGoogle Scholar
  16. 16.
    K. Teranishi, S. Tsushima, S. Hirai, Therm. Sci. Eng. 10, 59 (2002)Google Scholar
  17. 17.
    K. Teranishi, S. Tsushima, S. Hirai, Therm. Sci. Eng. 11, 35 (2003)Google Scholar
  18. 18.
    K. Teranishi, S. Tsushima, S. Hirai, Therm. Sci. Eng. 12, 91 (2004)Google Scholar
  19. 19.
    S. Tsushima, K. Teranishi, S. Hirai, Energy 30, 235 (2004)CrossRefGoogle Scholar
  20. 20.
    S. Tsushima, K. Teranishi, S. Hirai, Electrochem. Solid-State Lett. 7, A269 (2004)CrossRefGoogle Scholar
  21. 21.
    T. Mibae, S. Tsushima, S. Hirai, Therm. Sci. Eng. 12(4), 89 (2004)Google Scholar
  22. 22.
    S. Tsushima, K. Teranishi, K. Nishida, S. Hirai, Magn. Reson. Imaging 23, 255 (2005)CrossRefGoogle Scholar
  23. 23.
    K. Teranishi, S. Tsushima, S. Hirai, J. Electrochem. Soc. 153(4), A664 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Tsushima, T. Nanjo, K. Nishida, S. Hirai, ECS Trans. 1(6), 199 (2005)Google Scholar
  25. 25.
    S. Tsushima, K. Teranishi, S. Hirai, ECS Trans. 3(1), 91 (2006)CrossRefGoogle Scholar
  26. 26.
    S. Tsushima, S. Hirai, K. Kitamura, M. Yamashita, S. Takase, Appl. Magn. Reson. 32(1), 233 (2007)CrossRefGoogle Scholar
  27. 27.
    T. Kotaka, S. Tsushima, S. Hirai, ECS Trans. 11(1), 445 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Tsushima, T. Nanjo, S. Hirai, ECS Trans. 11(1), 435 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Ikeda, T. Koido, S. Tsushima, S. Hirai, ECS Trans. 16(2), 1035 (2008)CrossRefGoogle Scholar
  30. 30.
    S. Hirai, S. Tsushima, ECS Trans. 16(2), 1337 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Basu, H. Xu, M.W. Renfro, B.M. Cetegen, J. Fuel Cell Sci. Tech. 3, 1 (2006)CrossRefGoogle Scholar
  32. 32.
    S. Basu, M.W. Renfro, H. Gorgun, B.M. Cetegen, J. Power Sources 159, 987 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Basu, M.W. Renfro, B.M. Cetegen, J. Power Sources 162, 286 (2006)CrossRefGoogle Scholar
  34. 34.
    Y. Fujii, S. Tsushima, K. Fukuzato, S. Hirai, ECS Trans. 16(2), 1635 (2008)CrossRefGoogle Scholar
  35. 35.
    Y. Fujii, S. Tsushima, S. Hirai, J. Therm. Sci. Tech. 3(1), 94 (2008)CrossRefGoogle Scholar
  36. 36.
    Y. Fujii, S. Tsushima, S. Hirai, ECS Trans. 11(1), 451 (2007)CrossRefGoogle Scholar
  37. 37.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford University Press, New York, 1991)Google Scholar
  38. 38.
    B. Blűmich, NMR Imaging of Materials (Oxford University Press, New York, 2000)Google Scholar
  39. 39.
    R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997)Google Scholar
  40. 40.
    T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138(8), 2334 (1991)CrossRefGoogle Scholar
  41. 41.
    T.A. Zawodzinski, M. Neeman, L.O. Sillerud, S. Gottesfeld, J. Phy. Chem, 95, 6040 (1991)CrossRefGoogle Scholar
  42. 42.
    A.V. Ouriadov, R.P. MacGregor, B.J. Balcom, J. Magn. Reson. 169, 174 (2004)CrossRefGoogle Scholar
  43. 43.
    J. Reid, D. Labrie, Appl. Phys. B 26, 203 (1981)CrossRefGoogle Scholar
  44. 44.
    G.B. Riecker, H. Li, X. Liu, J.B. Jeffries, R.K. Hanson, M.G. Allen, S.D. Wehe, P.A. Mullhall, H.S. Kindle, Meas. Sci. Technol. 18, 1195 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Shohji Tsushima
    • 1
  • Shuichiro Hirai
    • 1
  1. 1.Research Center for Carbon Recycling and EnergyTokyo Institute of TechnologyTokyoJapan

Personalised recommendations