Skip to main content

High-Resolution Neutron Radiography Analysis of Proton Exchange Membrane Fuel Cells

  • Chapter
  • First Online:

Part of the book series: Modern Aspects of Electrochemistry ((MAOE))

Abstract

Neutron radiography enables direct visualization and quantification of many water transport phenomena in proton exchange membrane fuel cells (PEMFCs). The advantage of the technique is that neutrons have a long penetration length through most common PEMFC materials of construction (with a 1/e length of about 11 cm for aluminum), while having a relatively short 1/e length for water (of order 3 mm). This sensitivity to water enables precise measurements via neutron radiography of the water content in an operating PEMFC that are primarily limited by systematic measurement uncertainties. Recent advances in the spatial resolution of neutron detector technology enable direct measurement of the through-plane water content. This new data provides gas diffusion layer water profiles that can serve as input or comparison data for a large class of one-dimensional PEMFC models. In this article, the technique of neutron radiography is discussed, with an emphasis on the quantitative image analysis of the through-plane water content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Certain trade names and company products are mentioned in the text or identified in an illustration in order to adequately specify the experimental procedure and equipment used. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology nor does it imply that the products are necessarily the best available for the purpose

REFERENCES

  1. S.H. He, M.M. Mench, One-dimensional transient model for frost heave in polymer electrolyte fuel cells. J. Electrochem. Soc. 153, A1724–A1731 (2006)

    Article  CAS  Google Scholar 

  2. X. Huang, X. Wang, J. Preston, L. Bonville, H.R. Kunz, M. Perry, D. Condit, effect of water management schemes on the membrane durability in PEMFCs. ECS Trans. 16, 1697 (2008)

    Article  CAS  Google Scholar 

  3. D. Spernjak, S.G. Advani, A.K. Prasad, Simultaneous neutron and optical imaging in PEM fuel cells. J. Electrochem. Soc. 156, B109–B117 (2009)

    Article  CAS  Google Scholar 

  4. Y. Wang, C.Y. Wang, K.S. Chen, Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica. Acta. 52, 3965–3975 (2007)

    Article  CAS  Google Scholar 

  5. C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. Goebbels, J. Banhart, High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells. J. Power Sources 188, 468–474 (2009)

    Article  CAS  Google Scholar 

  6. S. Tsushima, S. Hirai, K. Kitamura, M. Yamashita, S. Takasel, MRI application for clarifying fuel cell performance with variation of polymer electrolyte membranes: Comparison of water content of a hydrocarbon membrane and a perfluorinated membrane. Appl. Magn. Reson. 32, 233–241 (2007)

    Article  CAS  Google Scholar 

  7. R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson, D. Jacobson, Neutron imaging technique for in situ measurement of water transport gradients within nafion in polymer electrolyte fuel cells. J. Electrochem. Soc. 146, 1099–1103 (1999)

    Article  CAS  Google Scholar 

  8. T.A. Trabold, J.P. Owejan, J.J. Gagliardo, D.L. Jacobson, D.S. Hussey M. Arif, Use of Neutron Imaging for Proton Exchange Membrane Fuel Cell (PEMFC) Performance Analysis and Design, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger. Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 6 (Wiley, New York, NY, 2009)

    Google Scholar 

  9. D.S. Hussey, D.L. Jacobson, M. Arif, J.P. Owejan, J.J. Gagliardo, T.A. Trabold, neutron images of the through-plane water distribution of an operating PEM fuel cell. J. Power Sources 172, 225–228 (2007)

    Article  CAS  Google Scholar 

  10. P. Boillat, D. Kramer, B.C. Seyfang, G. Frei, E. Lehmann, G.G. Scherer, A. Wokaun, Y. Ichikawa, Y. Tasaki, K. Shinohara, In situ observation of the water distribution across a PEFC using high resolution neutron radiography. Electrochem. commun. 10, 546 (2008)

    Article  CAS  Google Scholar 

  11. M.A. Hickner, N.P. Siegel, K.S. Chen, D.S. Hussey, D.L. Jacobson, M. Arif, In situ high-resolution neutron radiography of cross-sectional liquid water profiles in proton exchange membrane fuel cells. J. Electrochem. Soc. 155, B427 (2008)

    Article  CAS  Google Scholar 

  12. A.Z. Weber, M.A. Hickner, Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochimica. Acta. 53, 7668–7674 (2008)

    Article  CAS  Google Scholar 

  13. J. Spendelow, R. Mukundan, J. Davey, T. Rockward, D.S. Hussey, D. Jacobson, M. Arif, R.L. Borup, High resolution neutron radiography imaging of operating pem fuel cells: Effect of flow configuration and gravity on water distribution. ECS Trans. 16(2), 1345 (2008)

    Article  CAS  Google Scholar 

  14. P. Boillat, G.G. Scherer, A. Wokaun, G. Frei, E.H. Lehmann, Transient observation of H-2 labeled species in an operating PEFC using neutron radiography. Electrochem. Commu. 10, 1311 (2008)

    Article  CAS  Google Scholar 

  15. S. Kim, M.M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Phase-change-induced flow. J. Electrochem. Soc. 156, B353 (2009)

    Article  CAS  Google Scholar 

  16. W.E. Fischer, Physica B 234, 1202 (1997)

    Article  Google Scholar 

  17. C. Grunzweig, G. Frei, E. Lehmann, G. Kuhne, C. David, Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. Rev. Sci. Instrum. 78, 053708 (2007)

    Article  CAS  Google Scholar 

  18. E.H. Lehmann, G. Frei, G. Kuhne, P. Boillat, The micro-setup for neutron imaging: A major step forward to improve the spatial resolution. Nucl. Instrum. Methods, Sect. A 576, 389 (2007)

    Article  CAS  Google Scholar 

  19. O.H.W. Siegmund, J.V. Vallerga, A. Martin, et al., A high spatial resolution event counting neutron detector using microchannel plates and cross delay line readout. Nucl. Instrum. Methods, Sect. A 579, 188–191, (2007)

    Article  CAS  Google Scholar 

  20. A.S Tremsin., J.V. Vallerga, J.B. McPhate, et al., On the possibility to image thermal and cold neutron with sub-15 μm spatial resolution. Nucl. Instrum. Methods, Sect. A 592, 374–384 (2008)

    Article  CAS  Google Scholar 

  21. O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, R. Abiad, J. Hull, Nucl. Instrum. Methods, Sect. A 504, 177 (2003)

    Article  CAS  Google Scholar 

  22. Y. Edura, N. Morishima, Cold and thermal neutron scattering in liquid water: cross-section model and dynamics of water molecules, Nucl. Instrum. Methods, Sect. A 534, 531–543 (2004)

    Article  CAS  Google Scholar 

  23. E. Melkonian, Slow neutron velocity spectrometer studies of O2, N2A, H2, H2O, and seven hydrocarbons. Phys. Rev. 76, 1750 (1949); J.L. Russell, J.M. Neill, J.R. Brown, total cross section measurements in H20, General Atomic Div. Reports No.7581 (1966); K. Heinloth, Subthermal neutron scattering on H2O, CH2O2 AND C6H6. Zeitschrift fuer Physik 163, 218 (1961)

    Article  CAS  Google Scholar 

  24. P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, Boston, MA, 2003)

    Google Scholar 

  25. D.S. Hussey, D.L. Jacobson, M. Rangachary, R. Borup, J. Spendelow, Systematic uncertainties in neutron imaging of proton exchange membrane fuel cells, 214th ECS Meeting, Honolulu, HI October 15, (2008)

    Google Scholar 

  26. T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334 (1991)

    Article  CAS  Google Scholar 

  27. J.T. Hinatsu, M. Mizuhata, H. Takenaka, Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc. 141, 1493 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Commerce, the NIST Ionizing Radiation Division, the Director’s office of NIST, the NIST Center for Neutron Research, and the Department of Energy interagency agreement No. DEAI01-01EE50660. The authors wish to acknowledge R. Mukundan, J. Spendelow, R. Borup, and J. Davey from Los Alamos National Laboratory for assistance with the water sorption measurements, and E. Baltic at the National Institute of Standards and Technology for technical support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hussey, D., Jacobson, D. (2009). High-Resolution Neutron Radiography Analysis of Proton Exchange Membrane Fuel Cells. In: Wang, CY., Pasaogullari, U. (eds) Modeling and Diagnostics of Polymer Electrolyte Fuel Cells. Modern Aspects of Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98068-3_5

Download citation

Publish with us

Policies and ethics