High-Resolution Neutron Radiography Analysis of Proton Exchange Membrane Fuel Cells

  • D.S. Hussey
  • D.L. Jacobson
Part of the Modern Aspects of Electrochemistry book series (MAOE)


Neutron radiography enables direct visualization and quantification of many water transport phenomena in proton exchange membrane fuel cells (PEMFCs). The advantage of the technique is that neutrons have a long penetration length through most common PEMFC materials of construction (with a 1/e length of about 11 cm for aluminum), while having a relatively short 1/e length for water (of order 3 mm). This sensitivity to water enables precise measurements via neutron radiography of the water content in an operating PEMFC that are primarily limited by systematic measurement uncertainties. Recent advances in the spatial resolution of neutron detector technology enable direct measurement of the through-plane water content. This new data provides gas diffusion layer water profiles that can serve as input or comparison data for a large class of one-dimensional PEMFC models. In this article, the technique of neutron radiography is discussed, with an emphasis on the quantitative image analysis of the through-plane water content.


Point Spread Function Proton Exchange Membrane Fuel Cell Fluence Rate Membrane Electrode Assembly Total Water Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the US Department of Commerce, the NIST Ionizing Radiation Division, the Director’s office of NIST, the NIST Center for Neutron Research, and the Department of Energy interagency agreement No. DEAI01-01EE50660. The authors wish to acknowledge R. Mukundan, J. Spendelow, R. Borup, and J. Davey from Los Alamos National Laboratory for assistance with the water sorption measurements, and E. Baltic at the National Institute of Standards and Technology for technical support.


  1. 1.
    S.H. He, M.M. Mench, One-dimensional transient model for frost heave in polymer electrolyte fuel cells. J. Electrochem. Soc. 153, A1724–A1731 (2006)CrossRefGoogle Scholar
  2. 2.
    X. Huang, X. Wang, J. Preston, L. Bonville, H.R. Kunz, M. Perry, D. Condit, effect of water management schemes on the membrane durability in PEMFCs. ECS Trans. 16, 1697 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Spernjak, S.G. Advani, A.K. Prasad, Simultaneous neutron and optical imaging in PEM fuel cells. J. Electrochem. Soc. 156, B109–B117 (2009)CrossRefGoogle Scholar
  4. 4.
    Y. Wang, C.Y. Wang, K.S. Chen, Elucidating differences between carbon paper and carbon cloth in polymer electrolyte fuel cells. Electrochimica. Acta. 52, 3965–3975 (2007)CrossRefGoogle Scholar
  5. 5.
    C. Hartnig, I. Manke, R. Kuhn, S. Kleinau, J. Goebbels, J. Banhart, High-resolution in-plane investigation of the water evolution and transport in PEM fuel cells. J. Power Sources 188, 468–474 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Tsushima, S. Hirai, K. Kitamura, M. Yamashita, S. Takasel, MRI application for clarifying fuel cell performance with variation of polymer electrolyte membranes: Comparison of water content of a hydrocarbon membrane and a perfluorinated membrane. Appl. Magn. Reson. 32, 233–241 (2007)CrossRefGoogle Scholar
  7. 7.
    R.J. Bellows, M.Y. Lin, M. Arif, A.K. Thompson, D. Jacobson, Neutron imaging technique for in situ measurement of water transport gradients within nafion in polymer electrolyte fuel cells. J. Electrochem. Soc. 146, 1099–1103 (1999)CrossRefGoogle Scholar
  8. 8.
    T.A. Trabold, J.P. Owejan, J.J. Gagliardo, D.L. Jacobson, D.S. Hussey M. Arif, Use of Neutron Imaging for Proton Exchange Membrane Fuel Cell (PEMFC) Performance Analysis and Design, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger. Handbook of Fuel Cells – Fundamentals, Technology and Applications, vol. 6 (Wiley, New York, NY, 2009)Google Scholar
  9. 9.
    D.S. Hussey, D.L. Jacobson, M. Arif, J.P. Owejan, J.J. Gagliardo, T.A. Trabold, neutron images of the through-plane water distribution of an operating PEM fuel cell. J. Power Sources 172, 225–228 (2007)CrossRefGoogle Scholar
  10. 10.
    P. Boillat, D. Kramer, B.C. Seyfang, G. Frei, E. Lehmann, G.G. Scherer, A. Wokaun, Y. Ichikawa, Y. Tasaki, K. Shinohara, In situ observation of the water distribution across a PEFC using high resolution neutron radiography. Electrochem. commun. 10, 546 (2008)CrossRefGoogle Scholar
  11. 11.
    M.A. Hickner, N.P. Siegel, K.S. Chen, D.S. Hussey, D.L. Jacobson, M. Arif, In situ high-resolution neutron radiography of cross-sectional liquid water profiles in proton exchange membrane fuel cells. J. Electrochem. Soc. 155, B427 (2008)CrossRefGoogle Scholar
  12. 12.
    A.Z. Weber, M.A. Hickner, Modeling and high-resolution-imaging studies of water-content profiles in a polymer-electrolyte-fuel-cell membrane-electrode assembly. Electrochimica. Acta. 53, 7668–7674 (2008)CrossRefGoogle Scholar
  13. 13.
    J. Spendelow, R. Mukundan, J. Davey, T. Rockward, D.S. Hussey, D. Jacobson, M. Arif, R.L. Borup, High resolution neutron radiography imaging of operating pem fuel cells: Effect of flow configuration and gravity on water distribution. ECS Trans. 16(2), 1345 (2008)CrossRefGoogle Scholar
  14. 14.
    P. Boillat, G.G. Scherer, A. Wokaun, G. Frei, E.H. Lehmann, Transient observation of H-2 labeled species in an operating PEFC using neutron radiography. Electrochem. Commu. 10, 1311 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Kim, M.M. Mench, Investigation of temperature-driven water transport in polymer electrolyte fuel cell: Phase-change-induced flow. J. Electrochem. Soc. 156, B353 (2009)CrossRefGoogle Scholar
  16. 16.
    W.E. Fischer, Physica B 234, 1202 (1997)CrossRefGoogle Scholar
  17. 17.
    C. Grunzweig, G. Frei, E. Lehmann, G. Kuhne, C. David, Highly absorbing gadolinium test device to characterize the performance of neutron imaging detector systems. Rev. Sci. Instrum. 78, 053708 (2007)CrossRefGoogle Scholar
  18. 18.
    E.H. Lehmann, G. Frei, G. Kuhne, P. Boillat, The micro-setup for neutron imaging: A major step forward to improve the spatial resolution. Nucl. Instrum. Methods, Sect. A 576, 389 (2007)CrossRefGoogle Scholar
  19. 19.
    O.H.W. Siegmund, J.V. Vallerga, A. Martin, et al., A high spatial resolution event counting neutron detector using microchannel plates and cross delay line readout. Nucl. Instrum. Methods, Sect. A 579, 188–191, (2007)CrossRefGoogle Scholar
  20. 20.
    A.S Tremsin., J.V. Vallerga, J.B. McPhate, et al., On the possibility to image thermal and cold neutron with sub-15 μm spatial resolution. Nucl. Instrum. Methods, Sect. A 592, 374–384 (2008)CrossRefGoogle Scholar
  21. 21.
    O.H.W. Siegmund, A.S. Tremsin, J.V. Vallerga, R. Abiad, J. Hull, Nucl. Instrum. Methods, Sect. A 504, 177 (2003)CrossRefGoogle Scholar
  22. 22.
    Y. Edura, N. Morishima, Cold and thermal neutron scattering in liquid water: cross-section model and dynamics of water molecules, Nucl. Instrum. Methods, Sect. A 534, 531–543 (2004)CrossRefGoogle Scholar
  23. 23.
    E. Melkonian, Slow neutron velocity spectrometer studies of O2, N2A, H2, H2O, and seven hydrocarbons. Phys. Rev. 76, 1750 (1949); J.L. Russell, J.M. Neill, J.R. Brown, total cross section measurements in H20, General Atomic Div. Reports No.7581 (1966); K. Heinloth, Subthermal neutron scattering on H2O, CH2O2 AND C6H6. Zeitschrift fuer Physik 163, 218 (1961)CrossRefGoogle Scholar
  24. 24.
    P.R. Bevington, Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. (McGraw-Hill, Boston, MA, 2003)Google Scholar
  25. 25.
    D.S. Hussey, D.L. Jacobson, M. Rangachary, R. Borup, J. Spendelow, Systematic uncertainties in neutron imaging of proton exchange membrane fuel cells, 214th ECS Meeting, Honolulu, HI October 15, (2008)Google Scholar
  26. 26.
    T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, Polymer electrolyte fuel cell model. J. Electrochem. Soc. 138, 2334 (1991)CrossRefGoogle Scholar
  27. 27.
    J.T. Hinatsu, M. Mizuhata, H. Takenaka, Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor, J. Electrochem. Soc. 141, 1493 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D.S. Hussey
    • 1
  • D.L. Jacobson
    • 1
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations