Advertisement

Cold Start of Polymer Electrolyte Fuel Cells

  • Kazuya Tajiri
  • Chao-Yang Wang
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Introduction

The ability of polymer electrolyte fuel cells (PEFCs) to startup and operate under subzero temperatures has been an issue for the commercialization of the fuel cell vehicle (FCV). It is widely believed that during PEFC operation in a subzero temperature environment a portion of water produced from the oxygen reduction reaction (ORR) forms ice in the catalyst layer (CL) that hinders the oxygen transport to the reaction sites, until the PEFC eventually stops operation due to oxygen starvation. For the automotive application, successful cold start is defined as PEFC temperature increase above 0°C with self-heating before the cell shutdown due to oxygen starvation. Several automakers have already claimed capability of FCV startup from a subzero temperature environment. However, the underlying physics has only begun to emerge in the most recent literature.

Keywords

Oxygen Reduction Reaction Catalyst Layer Cold Start Bipolar Plate Convective Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.Y. Wang, X.G. Yang, Y. Tabuchi, F. Kagami, Handbook of fuel cells: fundamentals, technology, and application, vol. 6 (Wiley, New York, NY, 2009) p. 880Google Scholar
  2. 2.
    F. Kagami, T. Ogawa, Y. Hishinuma, T. Chikahisa, in Fuel cell seminar (Palm Springs, CA, 2002)Google Scholar
  3. 3.
    Y. Hishinuma, T. Chikahisa, F. Kagami, T. Ogawa, JSME Internati. J. Series B 47, 235 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Oszcipok, D. Riemann, U. Kronenwett, M. Kreideweis, M. Zedda, J. Power Sources 145, 407 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Oszcipok, M. Zedda, D. Riemann, D. Geckeler, J. Power Sources 154, 404 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Ge, C.-Y. Wang, Electrochem. Solid-State Lett. 9, A499 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Ge, C.-Y. Wang, Electrochim. Acta 52, 4825 (2007)CrossRefGoogle Scholar
  8. 8.
    E.L. Thompson, T. W. Capehart, T. J. Fuller, J. Jorne, J. Electrochem. Soc. 153, A2351 (2006)CrossRefGoogle Scholar
  9. 9.
    E.L. Thompson, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 154, B783 (2007)CrossRefGoogle Scholar
  10. 10.
    E.L. Thompson, J. Jorne, W. Gu, H.A. Gasteiger, J. Electrochem. Soc. 155, B625 (2008)CrossRefGoogle Scholar
  11. 11.
    E.L. Thompson, J. Jorne, W. Gu, H.A. Gasteiger, J. Electrochem. Soc. 155, B887 (2008)CrossRefGoogle Scholar
  12. 12.
    J. Li, S. Lee, J. Roberts, Electrochim. Acta 53, 5391 (2008)CrossRefGoogle Scholar
  13. 13.
    L. Mao, C.-Y. Wang, J. Electrochem. Soc. 154, B139 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Mao, C.-Y. Wang, Y. Tabuchi, J. Electrochem. Soc. 154, B341 (2007)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, J. Electrochem. Soc. 154, B1041 (2007)CrossRefGoogle Scholar
  16. 16.
    F. Jiang, W. Fang, C.-Y. Wang, Electrochim. Acta 53, 610 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Meng, J. Power Sources 178, 141 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Tajiri, Y. Tabuchi, C.-Y. Wang, J. Electrochem. Soc. 154, B147 (2007)CrossRefGoogle Scholar
  19. 19.
    T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, J. Electrochem. Soc. 138, 2334 (1991)CrossRefGoogle Scholar
  20. 20.
    C. Heitner-Wirguin, J. Membrane Sci. 120, 1 (1996)CrossRefGoogle Scholar
  21. 21.
    K.G. Gallagher, B.S. Pivovar, T.F. Fuller, J. Electrochem. Soc. 156, B330 (2009)CrossRefGoogle Scholar
  22. 22.
    R.C. McDonald, C.K. Mittelsteadt, E.L. Thompson, Fuel Cells 4, 208 (2004)CrossRefGoogle Scholar
  23. 23.
    S. Cleghorn, J. Kolde, W. Liu, in Handbook of Fuel Cells: Fundamentals, Technology, and Applications, ed. by W. Vielstich, A. Lamm, H.A. Gasteiger (Wiley, New York, NY, 2003) p. 566Google Scholar
  24. 24.
    K. Tajiri, Y. Tabuchi, F. Kagami, S. Takahashi, K. Yoshizawa, C.-Y. Wang, J. Power Sources 165, 279 (2007)CrossRefGoogle Scholar
  25. 25.
    S. Ge, C.-Y. Wang, J. Electrochem. Soc. 154, B1399 (2007)CrossRefGoogle Scholar
  26. 26.
    S.-Y. Lee, E. Cho, J.-H. Lee, H.-J. Kim, T.-H. Lim, I.-H. Oh, J. Won, J. Electrochem. Soc. 154, B194 (2007)CrossRefGoogle Scholar
  27. 27.
    J. St-Pierre, J. Roberts, K. Colbow, S. Campbell, A. Nelson, J. New Mater. Electrochem. Syst. 8, 163 (2005)Google Scholar
  28. 28.
    R. Bradean, H. Haas, A. Desousa, R. Rahmani, K. Fong, K. Eggen, D. Ayotte, A. Roett and A. Huang, AIChE 2005 Annual Meeting Cincinnati, OH, 2005.Google Scholar
  29. 29.
    P.K. Sinha, P. Halleck, C.-Y. Wang, Electrochem. Solid-State Lett. 9, A344 (2006)CrossRefGoogle Scholar
  30. 30.
    J. St-Pierre, A. Wong, J. Diep, D. Kiel, J. Power Sources 164, 196 (2007)CrossRefGoogle Scholar
  31. 31.
    S.-Y. Lee, S.-U. Kim, H.-J. Kim, J.H. Jang, I.-H. Oh, E.A. Cho, S.-A. Hong, J. Ko, T.-W. Lim, K.-Y. Lee, T.-H. Lim, J. Power Sources 180, 784 (2008)CrossRefGoogle Scholar
  32. 32.
    P.K. Sinha, C.-Y. Wang, J. Electrochem. Soc. 154, B1158 (2007)CrossRefGoogle Scholar
  33. 33.
    K. Tajiri, C.-Y. Wang, Y. Tabuchi, Electrochim. Acta 53, 6337 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kazuya Tajiri
    • 1
  • Chao-Yang Wang
    • 2
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.Electrochemical Engine Center (ECEC), and Department of Mechanical and Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations