Advertisement

Modeling of Membrane-Electrode-Assembly Degradation in Proton-Exchange-Membrane Fuel Cells – Local H2 Starvation and Start–Stop Induced Carbon-Support Corrosion

  • Wenbin Gu
  • Paul T. Yu
  • Robert N. Carter
  • Rohit Makharia
  • Hubert A. Gasteiger
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Abstract

Carbon-support corrosion causes electrode structure damage and thus electrode degradation. This chapter discusses fundamental models developed to predict cathode carbon-support corrosion induced by local H2 starvation and start–stop in a proton-exchange-membrane (PEM) fuel cell. Kinetic models based on the balance of current among the various electrode reactions are illustrative, yielding much insight on the origin of carbon corrosion and its implications for future materials developments. They are particularly useful in assessing carbon corrosion rates at a quasi-steady-state when an H2-rich region serves as a power source that drives an H2-free region as a load. Coupled kinetic and transport models are essential in predicting when local H2 starvation occurs and how it affects the carbon corrosion rate. They are specifically needed to estimate length scales at which H2 will be depleted and time scales that are valuable for developing mitigation strategies. To predict carbon-support loss distributions over an entire active area, incorporating the electrode pseudo-capacitance appears necessary for situations with shorter residence times such as start–stop events. As carbon-support corrosion is observed under normal transient operations, further model improvement shall be focused on finding the carbon corrosion kinetics associated with voltage cycling and incorporating mechanisms that can quantify voltage decay with carbon-support loss.

Keywords

Oxygen Evolution Reaction Stop Process Carbon Corrosion Stop Event Anode Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Dr. Frederick T. Wagner for useful discussions.

List of Symbols

a

electrochemically active surface area of an ingredient in an electrode, cm 2 /mg

C φ

electrode pseudo-capacitance, F/cm 2 electrode

ci

molar concentration of species i, mol/cm 3

Di

effective diffusion coefficient of species i, cm 2 /s

Di,mix

molecular diffusion coefficient of species i in a multi-component mixture, cm 2 /s

DK,i

Knudsen diffusion coefficient of species i, cm 2 /s

d

pore diameter of an electrode, cm

Eo

standard equilibrium (or reversible) potential of an electrode reaction, V

E dry or wet

activation energy for gas transport in the dry (or wet) phase of membrane, J/mol

E rev

activation energy of an electrode reaction at zero overpotential, J/mol

E an or cath

electric potential of anode (or cathode) electrode, V

F

Faraday constant, C/equiv

i

current density, A/cm 2

io

exchange current density of an electrode reaction, A/cm 2 Pt or C

ix,O2

O 2 crossover current density, A/cm 2

Kg

permeability of a porous medium, cm 2 /s

Km

permeability of gaseous species through membrane, mol cm/(cm 2 s kPa)

L

loading of an ingredient in an electrode, mg/cm 2

M

molecular weight of a species, g/mol

m

index for carbon weight loss dependence in the COR kinetics equation

n

number of electrons transferred in an electrode reaction

p

pressure, partial pressure of a species, kPa

q max

maximum stored charge, C/cm 2 electrode

R

universal gas constant, J/mol/K

R H

proton transport resistance, Ω cm 2

r Pt/C

weight ratio of ingredient Pt to carbon support in an electrode

RH

relative humidity, %

s

stoichiometry of a species in an electrode reaction

T

temperature, °C or K

t

time, s

v

gas velocity, cm/s

x

normalized location of H 2 /O 2 front at the anode

xi

mole fraction of species i in a gas mixture

Greek Symbols

α a

anodic transfer coefficient of an electrode reaction

α c

cathodic transfer coefficient of an electrode reaction

δ

thickness, cm

ɛ

porosity

φ

electric potential, V

γ

reaction order of a species in an electrode reaction

η

charge transfer overpotential of an electrode reaction, V

κ

proton conductivity, S/cm

σ

τ

electron conductivity, S/cm

tortuosity

μ mix

viscosity of a gas mixture, Pa s

θ

Mass fraction of carbon support that has been lost

Subscripts

an

anode

cath

cathode

CL

catalyst layer

e

electrolyte conducting protons

mem

membrane

s

solid conducting electrons

Superscripts

ref

reference

sat

saturated

References

  1. 1.
    M.F. Mathias, R. Makharia, H.A. Gasteiger, J.J. Conley, T.J. Fuller, C.J. Gittleman, S.S. Kocha, D.P. Miller, C.K. Mittelsteadt, T. Xie, S.G. Yan, P.T. Yu, Electrochem. Soc. Interface 14, 24 (2005)Google Scholar
  2. 2.
    R. Borup, J. Meyer, B. Pivovar, Y.S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenat, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J.E. McGrath, T. Inaba, K. Miyake, M. Hori, K. Ohto, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K. Kimijima, N. Iwashita, Chem. Rev. 107, 3904 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Schmittinger, A. Vahidi, J. Power Sources 180, 1 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Wu, X.Z. Yuan, J.J. Martin, H. Wanga, J. Zhang, J. Shen, S. Wu, W. Merida, J. Power Sources 184, 104 (2008)CrossRefGoogle Scholar
  5. 5.
    H.A. Gasteiger, W. Gu, B. Litteer, R. Makharia, M. Budinski, E. Thompson, F.T. Wagner, S.G. Yan, P.T. Yu, in Mini-Micro Fuel Cells, ed. by S. Kakaç, A. Pramuanjaroenkij, L. Vasiliev (Springer, Dordrecht, 2008)Google Scholar
  6. 6.
    J. Zhang, R.N. Carter, P.T. Yu, W. Gu, F.T. Wagner, H.A. Gasteiger, in Encyclopedia of Electrochemical Power Sources, Volume 2, ed. by J. Garche, C. Dyer, P. Moseley, Z. Ogumi, D. Rand, B. Scrosati. (Elsevier B.V., Amsterdam, 2009)Google Scholar
  7. 7.
    T. Hatanaka, T. Takeshita, H. Murata, N. Hasegawa, T. Asano, M. Kawasumi, Y. Morimoto, ECS Trans. 16(2), 1961 (2008)Google Scholar
  8. 8.
    C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.Y. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8, A273 (2005)CrossRefGoogle Scholar
  9. 9.
    T.W. Patterson, R.M. Darling, Electrochem. Solid-State Lett. 9, A183 (2006)CrossRefGoogle Scholar
  10. 10.
    H. Tang, Z. Qi, M. Ramani, J.F. Elter, J. Power Sources 158, 1306 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Makharia, S. Kocha, P. Yu, M.A. Sweikart, W. Gu, F. Wagner, H.A. Gasteiger, ECS Trans. 1(8), 3 (2006)Google Scholar
  12. 12.
    P.T. Yu, W. Gu, R. Makharia, F.T. Wagner, H.A. Gasteiger, ECS Trans. 3(1), 797 (2006)Google Scholar
  13. 13.
    Z.Y. Liu, B.K. Brady, R.N. Carter, B. Litteer, M. Budinski, J.K. Hyun, D.A. Muller, J. Electrochem. Soc. 155, B979 (2008)CrossRefGoogle Scholar
  14. 14.
    W. Gu, R. Makharia, P.T. Yu, H.A. Gasteiger, Preprint – Am. Chem. Soc. Div. Fuel Chem. 51(2), 692 (2006)Google Scholar
  15. 15.
    W. Gu, R.N. Carter, P.T. Yu, H.A. Gasteiger, ECS Trans. 11(1), 963 (2007)Google Scholar
  16. 16.
    H. Chizawa, Y. Ogami, H. Naka, A. Matsunaga, N. Aoki, T. Aoki, K. Tanaka, ECS Trans. 11(1), 981 (2007)Google Scholar
  17. 17.
    J. Kim, J. Lee, G. Lee, Y. Tak, ECS Trans. 16(2), 961 (2008)Google Scholar
  18. 18.
    A.B. Ofstad, J.R. Davey, S. Sunde, R.L. Borup, ECS Trans. 16(2), 1301 (2008)Google Scholar
  19. 19.
    W.R. Baumgartner, E. Wallnöfer, T. Schaffer, J.O. Besenhard, V. Hacker, V. Peinecke, P. Prenninger, ECS Trans. 3(1), 811 (2006)Google Scholar
  20. 20.
    R. Dross, B. Maynard, ECS Trans. 11(1), 1059 (2007)Google Scholar
  21. 21.
    Q. Shen, M. Hou, D. Liang, Z. Zhou, X. Li, Z. Shao, B. Yi, J. Power Sources 189, 1114 (2009)CrossRefGoogle Scholar
  22. 22.
    P.T. Yu, W. Gu, J. Zhang, R. Makharia, F.T. Wagner, H.A. Gasteiger, in PEFC Durability and Degradation, ed. by F.N. Büchi, M. Inaba, T.J. Schmidt (Springer, New York, NY, 2009)Google Scholar
  23. 23.
    P.T. Yu, W. Gu, F.T. Wagner, H.A. Gasteiger, Preprint – Am. Chem. Soc. Div. Fuel Chem. 52(2), 386 (2007)Google Scholar
  24. 24.
    J.P. Meyers, R.M. Darling, J. Electrochem. Soc., 153, A1432 (2006)CrossRefGoogle Scholar
  25. 25.
    T.F. Fuller, G. Gray, ECS Trans. 1(8), 345 (2006)Google Scholar
  26. 26.
    N. Takeuchi, T.F. Fuller, ECS Trans. 11(1), 1021 (2007)Google Scholar
  27. 27.
    N. Takeuchi, T.F. Fuller, J. Electrochem. Soc. 155, B770 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Hu, P.C. Sui, S. Kumar, N. Djilali, ECS Trans. 11(1), 1031 (2007)Google Scholar
  29. 29.
    J. Hu, P.C. Sui, N. Djilali, S. Kumar, ECS Trans. 16(2), 1313 (2008)Google Scholar
  30. 30.
    A. Gidwani, K. Jain, S. Kumar, J.V. Cole, ECS Trans. 16(2), 1323 (2008)Google Scholar
  31. 31.
    A.A. Franco, M. Gerard, J. Electrochem. Soc. 155, B367 (2008)CrossRefGoogle Scholar
  32. 32.
    A.A. Franco, M. Gerard, M. Guinard, B. Barthe, O. Lemairea, ECS Trans. 13(15), 35 (2008)CrossRefGoogle Scholar
  33. 33.
    K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 154, B631 (2007)CrossRefGoogle Scholar
  34. 34.
    K.C. Neyerlin, W. Gu, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 153, A1955 (2006)CrossRefGoogle Scholar
  35. 35.
    P.T. Yu, W. Gu, H.A. Gasteiger, Internal experimental data, Electrochemical Energy Research Laboratory, General Motors Research and Development (2007)Google Scholar
  36. 36.
    S.G. Bratsch, J. Phys. Chem. Ref. Data 18, 1 (1989)CrossRefGoogle Scholar
  37. 37.
    K. Kinoshita, Electrochemical Oxygen Technology (Wiley, New York, NY, 1992)Google Scholar
  38. 38.
    L.B. Kriksunov, L.V. Bunakova, S.E. Zabusova, L.I. Krishtalik, Electrochim. Acta 39, 137 (1994)CrossRefGoogle Scholar
  39. 39.
    A.E. Bolzan, A.J. Arvia, J. Electroanal. Chem. 375, 157 (1994)CrossRefGoogle Scholar
  40. 40.
    I.V. Barsukov, M.A. Gallego, J.E. Doninger, J. Power Sources 153, 288 (2006)CrossRefGoogle Scholar
  41. 41.
    K. Kinoshita, Carbon (Wiley, New York, NY, 1988)Google Scholar
  42. 42.
    Y. Liu, M. Murphy, D. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger, ECS Trans. 11(1), 473 (2007)Google Scholar
  43. 43.
    Y. Liu, M.W. Murphy, D.R. Baker, W. Gu, C. Ji, J. Jorne, H.A. Gasteiger, J. Electrochem. Soc. 156, B970 (2009)CrossRefGoogle Scholar
  44. 44.
    C.K. Mittelsteadt, H. Liu, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 5: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 1, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)Google Scholar
  45. 45.
    A.E. Fischer, G.M. Swain, J. Electrochem. Soc. 152, B369 (2005)CrossRefGoogle Scholar
  46. 46.
    E. Antolini, Appl. Catalysis B: Environ. 88, 1 (2009)CrossRefGoogle Scholar
  47. 47.
    S.D. Knights, K.M. Colbow, J. St.-Pierre, D.P. Wilkinson, J. Power Sources 127, 127 (2004)CrossRefGoogle Scholar
  48. 48.
    T.R. Ralph, S. Hudson, D.P. Wilkinson, ECS Trans. 1(8), 67 (2006)Google Scholar
  49. 49.
    C.R. Wilke, J. Chem. Phys. 18, 517 (1950)CrossRefGoogle Scholar
  50. 50.
    C.R. Wilke, Chem. Eng. Prog. 46, 95 (1950)Google Scholar
  51. 51.
    D. Baker, C. Wieser, K.C. Neyerlin, M.W. Murphy, ECS Trans. 3(1), 989 (2006)Google Scholar
  52. 52.
    D.R. Baker, D.A. Caulk, K.C. Neyerlin, M.W. Murphy, J. Electrochem. Soc., 156, B991 (2009)CrossRefGoogle Scholar
  53. 53.
    S.V. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, New York, NY, 1980)Google Scholar
  54. 54.
    R.N. Carter, W. Gu, B. Brady, K. Subramanian, H.A. Gasteiger, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 6: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 2, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)Google Scholar
  55. 55.
    R.N. Carter, S.S. Kocha, F.T. Wagner, M. Fay, H.A. Gasteiger, ECS Trans. 11(1), 403 (2007)Google Scholar
  56. 56.
    K.G. Gallagher, D.T. Wong, T.F. Fuller, J. Electrochem. Soc. 155, B488 (2009)CrossRefGoogle Scholar
  57. 57.
    S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, J. Power Sources 176, 444 (2008)CrossRefGoogle Scholar
  58. 58.
    K.G. Gallagher, R.M. Darling, T.F. Fuller, in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 6: Advances in Electrocatalysis, Materials, Diagnostics and Durability, Part 2, ed. by W. Vielstich, H. Yokokawa, H.A. Gasteiger (Wiley, New York, NY, 2009)Google Scholar
  59. 59.
    B.E. Conway, V. Birss, J. Wojtowicz, J. Power Sources 66, 1 (1997)CrossRefGoogle Scholar
  60. 60.
    L.C. Colmenares, A. Wurth, Z. Jusys, R.J. Behm, J. Power Sources 190, 14 (2009)CrossRefGoogle Scholar
  61. 61.
    Y. Shao, J. Wang, R. Kou, M. Engelhard, J. Liu, Y. Wang, Y. Lin, Electrochim. Acta 54, 3109 (2009)CrossRefGoogle Scholar
  62. 62.
    N. Takeuchi, T.F. Fuller, ECS Trans. 16(2), 1563 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wenbin Gu
    • 1
  • Paul T. Yu
    • 1
  • Robert N. Carter
    • 1
  • Rohit Makharia
    • 1
  • Hubert A. Gasteiger
    • 2
  1. 1.General Motors Research and DevelopmentElectrochemical Energy Research LaboratoryHoneoye FallsUSA
  2. 2.Department of ChemistryTechnische Universität MünchenGarchingGermany

Personalised recommendations