Skip to main content

Durability of PEM Fuel Cell Membranes

  • Chapter
  • First Online:
Modeling and Diagnostics of Polymer Electrolyte Fuel Cells

Part of the book series: Modern Aspects of Electrochemistry ((MAOE))

Abstract

Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the “separation” function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Borup et al., Chem. Rev. 107, 3904 (2007)

    Article  CAS  Google Scholar 

  2. T.W. Patterson et al., US Patent 7, 442, 453 B1, (2008)

    Google Scholar 

  3. T.A. Bekkedahl et al., US Patent 6, 913, 845, (2004)

    Google Scholar 

  4. A. Pozio et al., Electrochem. Acta 48, 1543, (2003)

    Article  CAS  Google Scholar 

  5. A. Ohma, S. Yamamoto, and K. Shinohara, J. Power Sources 182(1), 39 (2008)

    Article  CAS  Google Scholar 

  6. P.J. Ferreira et al., J. Electrochem. Soc. 152, A2256 (2005)

    Google Scholar 

  7. K. Yasuda et al., Z. Phys. Chem. Chem. Phys. 8, 746 (2006)

    Article  CAS  Google Scholar 

  8. E. Guilminot et al., J. Electrochem. Soc. 154, B1106 (2007)

    CAS  Google Scholar 

  9. C. Iojoiu et al., J. Electrochem. Soc. 154, B1115 (2007)

    CAS  Google Scholar 

  10. K. Matsuoka et al., J. Power Sources 179, 560 (2008)

    Article  CAS  Google Scholar 

  11. S. Sugawara et al., J. Power Sources, 187, 324 (2009)

    Article  CAS  Google Scholar 

  12. T.W. Patterson, R.M. Darling, Electrochem Solid-State Lett 9, A183 (2006)

    Article  CAS  Google Scholar 

  13. G. Gebel, P. Aldebert, M. Pineri, Polymer 34, 333 (1993)

    Article  CAS  Google Scholar 

  14. G. Gebel, Polymer 41, 5829 (2000)

    Article  CAS  Google Scholar 

  15. R. Baldwin et al., J. Power Sources 29, 399 (1990)

    Article  CAS  Google Scholar 

  16. A. Bosnjakovic, S. Schlick, J. Phys. Chem. B 108, 4332 (2004)

    Article  CAS  Google Scholar 

  17. M.L. Kremer, J. Phys. Chem. A. 107, 1734 (2003)

    Article  CAS  Google Scholar 

  18. V.O. Mittal, H.R. Kunz, J.M. Fenton, Electrochem Solid-State Lett 9(6), A299 (2006)

    Article  CAS  Google Scholar 

  19. V.O. Mittal, PhD Dissertation, Chemical Engineering Department, University of Connecticut: Storrs, Connecticut, 2006

    Google Scholar 

  20. M. Aoki, H. Uchida, M. Watanabe, Electrochem. Comm. 7, 1434 (2005)

    Article  CAS  Google Scholar 

  21. M. Watanabe et al., J. Electrochem. Soc. 143(12), 3847 (1996)

    CAS  Google Scholar 

  22. M. Watanabe, H. Uchida, M. Emori, J. Electrochem. Soc. 145(4), 1137 (1998)

    CAS  Google Scholar 

  23. D.E. Curtin et al., J. Power Sources 131, 41 (2004)

    Article  CAS  Google Scholar 

  24. C. Zhou, M.A. Guerra, Z.M. Qiu, etc., Macromolecules, 40, 8695 (2007)

    Article  CAS  Google Scholar 

  25. G. Escobedo, Project ID# FC5, 2006 DOE Hydrogen Program Merit Review, available in CD and online.

    Google Scholar 

  26. M. Hicks, Project ID# FC8, 2006 DOE Hydrogen Program Merit Review, available in CD and online.

    Google Scholar 

  27. V.O. Mittal, H.R. Kunz, J.M. Fenton, ECS Trans. 1, 275 (2006)

    Article  CAS  Google Scholar 

  28. N.E. Cipollini, ECS Trans. 11, 1071 (2007)

    Article  CAS  Google Scholar 

  29. F.D. Coms, ECS Trans. 16, 235 (2008)

    Article  CAS  Google Scholar 

  30. E. Endoh et al., Electrochem. Solid-State Lett. 7, A209 (2004)

    Article  CAS  Google Scholar 

  31. M. Inaba et al., Electrochim. Acta 51, 5746 (2006)

    Article  CAS  Google Scholar 

  32. M. Quintus et al., Chemical membrane degradation in automotive fuel cell – Mechanisms and mitigation, 2nd Annual International Symposium on Fuel Cell Durability & Performance, Miami Beach, FL,7–8 Dec 2006

    Google Scholar 

  33. W. Liu, K. Ruth, G. Rusch, J. New Mater. Electrochem. Syst. 4, 227 (2001)

    Article  CAS  Google Scholar 

  34. X. Huang et al., J. Polym. Sci., Part B: Polym. Phys. 44, 2346 (2006)

    Article  CAS  Google Scholar 

  35. D.R., Morris, X. Sun, J Appl Polym Sci. 50, 1445 (1993)

    Article  CAS  Google Scholar 

  36. Y. Zou, Master Thesis, Mechanical Engineering Department, University of Connecticut, 2007

    Google Scholar 

  37. P.B. Bowden, R.J. Oxborough, Phil. Mag. 28, 547 (1973)

    Article  Google Scholar 

  38. R. Solasi et al., Mechanical response of 3-layreed MEA during RH and T variation based on mechanical properties measured under controlled T and RH, Proceedings of 4th International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, 19–21 June 2006

    Google Scholar 

  39. K.A. Page, K.M., Cable, R.B., Moore, Macromolecules 38, 6472 (2005)

    Article  CAS  Google Scholar 

  40. J.E., McGrath, Advanced materials for proton exchange membranes, DOE Hydrogen Program Merit Review Presentation, 2006

    Google Scholar 

  41. S. Stucki, G.G. Scherer, J. Appl. Electrochem. 28, 1041 (1998)

    Article  CAS  Google Scholar 

  42. R. Abouatallah, Hydrogenics’ fuel cell stack durability at non-humidified conditions, 2nd Annual International Symposium on Fuel Cell Durability & Performance, Miami Beach, FL,7–8 Dec 2006.

    Google Scholar 

  43. K.L. Reifsnider S. Case, Damage Tolerance and Durability of Material Systems (Wiley, New York, NY, 2003)

    Google Scholar 

  44. E. Endoh, ECS Trans. 3, 9 (2006)

    Article  CAS  Google Scholar 

  45. J. Wu et al., J. Power Sources 184(1), 104 (2008)

    Article  CAS  Google Scholar 

  46. E. Endoh, US Patent Application 0111076, (2007)

    Google Scholar 

  47. E. Endoh, US Patent Application 0104994, (2007)

    Google Scholar 

  48. E. Endoh, ECS Trans 16, 1229 (2008)

    Article  CAS  Google Scholar 

  49. X. Huang et al., ECS Trans. 16, 1573 (2008)

    Article  CAS  Google Scholar 

  50. B. Sompalli et al., J. Electrochem. Soc. 154, B1349 (2007)

    Article  CAS  Google Scholar 

  51. V. Peinecke et al. US Patent 6,716,551, (2004)

    Google Scholar 

  52. J. Zhang et al., Science 315(5809), 220 (2007)

    Article  CAS  Google Scholar 

  53. X. Huang et al., ECS Trans. 16, 1697 (2008)

    Article  CAS  Google Scholar 

  54. A.Z. Weber, R.M. Darling, J. Power Sources 168(1), 191 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

In the past 7 years or so, our work on the membrane degradation has been sponsored by National Science Foundation (CMS-0408807, CBET-0829082), UTC Power and UTRC, and Connecticut Innovation’s Yankee Ingenuity Program. A number of current and former students have contributed to various extents in carrying out the experimental and analytical work. The authors wish to thank Matthew Feshler, Yue Zou, Roham Solasi, Hongying Zhao, Xiaofeng Wang, Wonseok Yoon, and William Rigdon.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Huang, X., Reifsnider, K. (2009). Durability of PEM Fuel Cell Membranes. In: Wang, CY., Pasaogullari, U. (eds) Modeling and Diagnostics of Polymer Electrolyte Fuel Cells. Modern Aspects of Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98068-3_1

Download citation

Publish with us

Policies and ethics