Advertisement

Durability of PEM Fuel Cell Membranes

  • Xinyu Huang
  • Ken Reifsnider
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE)

Abstract

Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the “separation” function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

Keywords

Fuel Cell Polymer Electrolyte Membrane Bipolar Plate Polymer Electrolyte Membrane Fuel Cell Membrane Degradation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

In the past 7 years or so, our work on the membrane degradation has been sponsored by National Science Foundation (CMS-0408807, CBET-0829082), UTC Power and UTRC, and Connecticut Innovation’s Yankee Ingenuity Program. A number of current and former students have contributed to various extents in carrying out the experimental and analytical work. The authors wish to thank Matthew Feshler, Yue Zou, Roham Solasi, Hongying Zhao, Xiaofeng Wang, Wonseok Yoon, and William Rigdon.

References

  1. 1.
    R. Borup et al., Chem. Rev. 107, 3904 (2007)CrossRefGoogle Scholar
  2. 2.
    T.W. Patterson et al., US Patent 7, 442, 453 B1, (2008)Google Scholar
  3. 3.
    T.A. Bekkedahl et al., US Patent 6, 913, 845, (2004)Google Scholar
  4. 4.
    A. Pozio et al., Electrochem. Acta 48, 1543, (2003)CrossRefGoogle Scholar
  5. 5.
    A. Ohma, S. Yamamoto, and K. Shinohara, J. Power Sources 182(1), 39 (2008)CrossRefGoogle Scholar
  6. 6.
    P.J. Ferreira et al., J. Electrochem. Soc. 152, A2256 (2005)Google Scholar
  7. 7.
    K. Yasuda et al., Z. Phys. Chem. Chem. Phys. 8, 746 (2006)CrossRefGoogle Scholar
  8. 8.
    E. Guilminot et al., J. Electrochem. Soc. 154, B1106 (2007)Google Scholar
  9. 9.
    C. Iojoiu et al., J. Electrochem. Soc. 154, B1115 (2007)Google Scholar
  10. 10.
    K. Matsuoka et al., J. Power Sources 179, 560 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Sugawara et al., J. Power Sources, 187, 324 (2009)CrossRefGoogle Scholar
  12. 12.
    T.W. Patterson, R.M. Darling, Electrochem Solid-State Lett 9, A183 (2006)CrossRefGoogle Scholar
  13. 13.
    G. Gebel, P. Aldebert, M. Pineri, Polymer 34, 333 (1993)CrossRefGoogle Scholar
  14. 14.
    G. Gebel, Polymer 41, 5829 (2000)CrossRefGoogle Scholar
  15. 15.
    R. Baldwin et al., J. Power Sources 29, 399 (1990)CrossRefGoogle Scholar
  16. 16.
    A. Bosnjakovic, S. Schlick, J. Phys. Chem. B 108, 4332 (2004)CrossRefGoogle Scholar
  17. 17.
    M.L. Kremer, J. Phys. Chem. A. 107, 1734 (2003)CrossRefGoogle Scholar
  18. 18.
    V.O. Mittal, H.R. Kunz, J.M. Fenton, Electrochem Solid-State Lett 9(6), A299 (2006)CrossRefGoogle Scholar
  19. 19.
    V.O. Mittal, PhD Dissertation, Chemical Engineering Department, University of Connecticut: Storrs, Connecticut, 2006Google Scholar
  20. 20.
    M. Aoki, H. Uchida, M. Watanabe, Electrochem. Comm. 7, 1434 (2005)CrossRefGoogle Scholar
  21. 21.
    M. Watanabe et al., J. Electrochem. Soc. 143(12), 3847 (1996)Google Scholar
  22. 22.
    M. Watanabe, H. Uchida, M. Emori, J. Electrochem. Soc. 145(4), 1137 (1998)Google Scholar
  23. 23.
    D.E. Curtin et al., J. Power Sources 131, 41 (2004)CrossRefGoogle Scholar
  24. 24.
    C. Zhou, M.A. Guerra, Z.M. Qiu, etc., Macromolecules, 40, 8695 (2007)CrossRefGoogle Scholar
  25. 25.
    G. Escobedo, Project ID# FC5, 2006 DOE Hydrogen Program Merit Review, available in CD and online.Google Scholar
  26. 26.
    M. Hicks, Project ID# FC8, 2006 DOE Hydrogen Program Merit Review, available in CD and online.Google Scholar
  27. 27.
    V.O. Mittal, H.R. Kunz, J.M. Fenton, ECS Trans. 1, 275 (2006)CrossRefGoogle Scholar
  28. 28.
    N.E. Cipollini, ECS Trans. 11, 1071 (2007)CrossRefGoogle Scholar
  29. 29.
    F.D. Coms, ECS Trans. 16, 235 (2008)CrossRefGoogle Scholar
  30. 30.
    E. Endoh et al., Electrochem. Solid-State Lett. 7, A209 (2004)CrossRefGoogle Scholar
  31. 31.
    M. Inaba et al., Electrochim. Acta 51, 5746 (2006)CrossRefGoogle Scholar
  32. 32.
    M. Quintus et al., Chemical membrane degradation in automotive fuel cell – Mechanisms and mitigation, 2nd Annual International Symposium on Fuel Cell Durability & Performance, Miami Beach, FL,7–8 Dec 2006Google Scholar
  33. 33.
    W. Liu, K. Ruth, G. Rusch, J. New Mater. Electrochem. Syst. 4, 227 (2001)CrossRefGoogle Scholar
  34. 34.
    X. Huang et al., J. Polym. Sci., Part B: Polym. Phys. 44, 2346 (2006)CrossRefGoogle Scholar
  35. 35.
    D.R., Morris, X. Sun, J Appl Polym Sci. 50, 1445 (1993)CrossRefGoogle Scholar
  36. 36.
    Y. Zou, Master Thesis, Mechanical Engineering Department, University of Connecticut, 2007Google Scholar
  37. 37.
    P.B. Bowden, R.J. Oxborough, Phil. Mag. 28, 547 (1973)CrossRefGoogle Scholar
  38. 38.
    R. Solasi et al., Mechanical response of 3-layreed MEA during RH and T variation based on mechanical properties measured under controlled T and RH, Proceedings of 4th International Conference on Fuel Cell Science, Engineering and Technology, Irvine, CA, 19–21 June 2006Google Scholar
  39. 39.
    K.A. Page, K.M., Cable, R.B., Moore, Macromolecules 38, 6472 (2005)CrossRefGoogle Scholar
  40. 40.
    J.E., McGrath, Advanced materials for proton exchange membranes, DOE Hydrogen Program Merit Review Presentation, 2006Google Scholar
  41. 41.
    S. Stucki, G.G. Scherer, J. Appl. Electrochem. 28, 1041 (1998)CrossRefGoogle Scholar
  42. 42.
    R. Abouatallah, Hydrogenics’ fuel cell stack durability at non-humidified conditions, 2nd Annual International Symposium on Fuel Cell Durability & Performance, Miami Beach, FL,7–8 Dec 2006.Google Scholar
  43. 43.
    K.L. Reifsnider S. Case, Damage Tolerance and Durability of Material Systems (Wiley, New York, NY, 2003)Google Scholar
  44. 44.
    E. Endoh, ECS Trans. 3, 9 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Wu et al., J. Power Sources 184(1), 104 (2008)CrossRefGoogle Scholar
  46. 46.
    E. Endoh, US Patent Application 0111076, (2007)Google Scholar
  47. 47.
    E. Endoh, US Patent Application 0104994, (2007)Google Scholar
  48. 48.
    E. Endoh, ECS Trans 16, 1229 (2008)CrossRefGoogle Scholar
  49. 49.
    X. Huang et al., ECS Trans. 16, 1573 (2008)CrossRefGoogle Scholar
  50. 50.
    B. Sompalli et al., J. Electrochem. Soc. 154, B1349 (2007)CrossRefGoogle Scholar
  51. 51.
    V. Peinecke et al. US Patent 6,716,551, (2004)Google Scholar
  52. 52.
    J. Zhang et al., Science 315(5809), 220 (2007)CrossRefGoogle Scholar
  53. 53.
    X. Huang et al., ECS Trans. 16, 1697 (2008)CrossRefGoogle Scholar
  54. 54.
    A.Z. Weber, R.M. Darling, J. Power Sources 168(1), 191 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA

Personalised recommendations