Advertisement

Silicon Photonic Wire Waveguide Sensors

  • S. Janz
  • A. Densmore
  • D.-X. Xu
  • P. Waldron
  • J. Lapointe
  • J. H. Schmid
  • T. Mischki
  • G. Lopinski
  • A. Delâge
  • R. McKinnon
  • P. Cheben
  • B. Lamontagne
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Silicon photonic wire evanescent field (PWEF) waveguide sensors have a very high intrinsic response to molecular adsorption. This response arises from the high refractive index contrast and small size of these waveguides, which in combination cause much of the electric field to be localized to a thin layer adjacent to the waveguide surface. We describe the basic theory of PWEF waveguide sensors and compare the predicted PWEF sensor performance with that of surface plasmon resonance (SPR) and other waveguide systems. Finally, we present experimental results for PWEF sensors incorporated into integrated optical circuits employing Mach–Zehnder interferometers (MZIs), ring resonators, and folded waveguide structures that both amplify and facilitate the interrogation of the PWEF sensor response.

Keywords

Surface Plasmon Resonance Effective Index Waveguide Mode Ring Resonator Surface Plasmon Resonance Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been supported by the National Research Council Canada Genomic and Health Initiative.

References

  1. 1.
    Elwing, H., Protein adsorption and ellipsometry in biomaterial research, Biomaterials 1998, 19, 397–406CrossRefGoogle Scholar
  2. 2.
    Smith, T., Ellipsometry for measurements at and below monolayer coverage, J. Opt. Soc. Am. 1968, 58, 1069–1079CrossRefGoogle Scholar
  3. 3.
    Patskovsky, S.; Meunier, M.; Kabashin, A. V., Phase-sensitive silicon-based total internal reflection sensor, Opt. Express 2007, 15, 12523–12528CrossRefGoogle Scholar
  4. 4.
    Gao, T.; Rothberg, L. J., Label-free sensing of binding to microarrays using Brewster angle straddle interferometry, Anal. Chem. 2007, 79, 7589–7595CrossRefGoogle Scholar
  5. 5.
    Zhu, X.; Landry, J. P.; Sun, Y. S.; Gregg, J. P.; Lam, K. S.; Guo, X., Oblique incidence reflectivity difference microscope for label-free high-throughput biochemical reactions in a microarray format, Appl. Opt. 2007, 46, 1890–1895CrossRefGoogle Scholar
  6. 6.
    Joo, C.; de Boer, J. F., Spectral-domain optical coherence reflectometric sensor for highly sensitive molecular detection, Opt. Lett. 2007, 32, 2426–2428CrossRefGoogle Scholar
  7. 7.
    Shen, Y. R., Optical second-harmonic generation at interfaces, Annu. Rev. Phys. Chem. 1989, 40, 327–350CrossRefGoogle Scholar
  8. 8.
    Shen, Y. R., Surface properties probed by second harmonic and sum-frequency generation, Nature 1989, 337, 519–525CrossRefGoogle Scholar
  9. 9.
    Corn, R. M.; Higgins, D. A., Optical second-harmonic generation as a probe of surface chemistry, Chem. Rev. 1994, 94, 107–125CrossRefGoogle Scholar
  10. 10.
    Vo-Dinh, T.; Stokes, D. L., Surface enhanced Raman scattering for biomedical diagnostics, Biomedical Photonics Handbook, Vo-Dinh, T., Ed. CRC Press, Boca Raton, FL, 2003, 64.1–64.39Google Scholar
  11. 11.
    Moskovits, M., Surface-enhanced Raman spectroscopy: a brief retrospective, J. Raman Spectrosc. 2005, 36, 485–496CrossRefGoogle Scholar
  12. 12.
    Osawa, M., Surface enhanced infrared absorption, In Near Field Optics and Plasmon Polaritons; Kawata, S., Ed.; Springer, Berlin, 2001, 163–187CrossRefGoogle Scholar
  13. 13.
    Homola, J., Ed., Surface Plasmon Based Resonance Sensors, Springer, Berlin, 2006Google Scholar
  14. 14.
    Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review, Sens. Actuators B 1999, 54, 3–15CrossRefGoogle Scholar
  15. 15.
    Karlsson, R., SPR for molecular interaction analysis: a review of emerging application areas, J. Molec. Recognit. 2004, 17, 151–161CrossRefGoogle Scholar
  16. 16.
    Lukosz, W., Principles and sensitivities of integrated optical and surface plasmon sensors for direct affinity sensing and immunosensing, Biosens. Bioelectron. 1991, 6, 215–225CrossRefGoogle Scholar
  17. 17.
    Luff, B. J.; Wilkinson, J. S.; Piehler, J.; Hollenback, U.; Ingenhoff, J.; Fabricius, N.; Integrated optical Mach-Zehnder biosensor, J. Lightwave Technol., 1998, 16, 583–591CrossRefGoogle Scholar
  18. 18.
    Prieto, F.; Sepulveda, B.; Calle, A.; Llobera, A.; Dominguez, C.; Abad, A.; Montoya, A.; Lechuga, L. M., An integrated optical interferometric nanodevice based on silicon technology for biosensor applications, Nanotechnology 2003, 14, 907–912CrossRefGoogle Scholar
  19. 19.
    Boyd, R. W.; Heebner, J. E., Sensitive disk resonator photonic biosensor, Appl. Opt. 2001, 40, 5742– 5747CrossRefGoogle Scholar
  20. 20.
    Weisser, M.; Tovar, G.; Mittler-Neher, S.; Knoll, W.; Brosinger, F.; Freimuth, H.; Lacher, M.; Ehrfeld, W., Specific biorecognition reactions observed with and integrated Mach-Zehnder interferometer, Biosens. Bioelectron. 1999, 14, 405–411CrossRefGoogle Scholar
  21. 21.
    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J., Integrated-optical directional coupler biosensor, Opt. Lett. 1996, 21, 618–620CrossRefGoogle Scholar
  22. 22.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Monitoring living cell attachment and spreading using reverse symmetry waveguide sensing, Appl. Phys. Lett. 2005, 86, 071101–071103CrossRefGoogle Scholar
  23. 23.
    Reed, G. T.; Knights, A. P., Silicon Photonics: An Introduction, Wiley, Chichester 2004CrossRefGoogle Scholar
  24. 24.
    Pavesi, L.; Lockwood, D. J., Silicon Photonics, Springer, Berlin, 2004Google Scholar
  25. 25.
    Bogaerts, W.; Tailaert, D.; Luyssaert, B.; Dumon, P.; van Campenhout, J.; Bientsman, P.; van Thourhout, D.; Baets, R., Basic structures for photonic integrated circuits in silicon-on-insulator, Opt. Express 2004, 12, 1583–1591CrossRefGoogle Scholar
  26. 26.
    Ahmad, R. U.; Pizzuto, F.; Camarda, G. S.; Espinola, R. L.; Rao, H.; Osgoode, R. M., Ultracompact corner-mirrors and T-branches in silicon-on-insulator, IEEE Phot. Technol. Lett. 2002, 14, 65–67CrossRefGoogle Scholar
  27. 27.
    Dulkeith, E.; Xia, F.; Schares, L.; Green, W. M. J.; Vlasov, Y. A., Group index and group velocity dispersion in silicon-on-insulator photonic wires, Opt. Express 2006, 14, 3853–3863CrossRefGoogle Scholar
  28. 28.
    Rich, R. L.; Myszka, D. G., BIACORE J: a new platform for routine biomolecular interaction analysis, J. Mol. Recognit. 2001, 14, 223–228CrossRefGoogle Scholar
  29. 29.
    Hunsperger, R. G., Integrated Optics: Theory and Technology, 3rd edn.; Springer, Berlin, 1991CrossRefGoogle Scholar
  30. 30.
    Kogelnik, H., Theory of optical waveguides, In Guided Wave Optoelectronics; 2nd edn, Tamir, T., Ed.; Springer, Berlin, 1990, 7–87CrossRefGoogle Scholar
  31. 31.
    Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, Orlando, FL, 1985Google Scholar
  32. 32.
    Densmore, A.; Xu, D.-X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.; Delâge, A.; Lamontagne, B.; Schmid, J. H.; Post, E., A silicon-on-insulator photonic wire based evanescent field sensor, IEEE Photon. Technol. Lett. 2006, 18, 2520–2522CrossRefGoogle Scholar
  33. 33.
    Goh, J. B.; Loo, R. W.; Goh, M. C., Label free monitoring of multiple biomolecular binding interactions in real-time with diffraction-based sensing, Sens. Actuators B: Chem. 2005, 106, 243–248CrossRefGoogle Scholar
  34. 34.
    Ouyang, H.; Striemer, C. C.; Fauchet, P. M., Quantitative analysis of the sensitivity of porous silicon optical biosensors, Appl. Phys. Lett. 2006, 88, 163108–163110CrossRefGoogle Scholar
  35. 35.
    Saarinen, J. J.; Weiss, S. M.; Fauchet, P. M.; Sipe, J. E., Optical sensor based on resonant porous silicon structures, Opt. Express 2005, 13, 3754–3764CrossRefGoogle Scholar
  36. 36.
    Tiefenthaler, K.; Lukosz, W., Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 1989, 6, 209–220CrossRefGoogle Scholar
  37. 37.
    Parriaux, O.; Veldhuis, G. J., Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors, J. Lightwave Technol. 1998, 16, 573–582CrossRefGoogle Scholar
  38. 38.
    Mann, E. K.; Heinrich, L.; Schaaf, P.,Validity of the uniform thin-film approximation for the optical analysis of particulate films, Langmuir 1997, 13, 4906–4909CrossRefGoogle Scholar
  39. 39.
    Guemouri, L.; Olgier, J.; Ramsden, J. J., Optical properties of protein monolayers during assembly, J. Chem Phys. 1998, 109, 3265–3268CrossRefGoogle Scholar
  40. 40.
    Sipe, J. E., New Green-function formalism for surface optics, J. Opt. Soc. Am. B 1987, 4, 481–489CrossRefGoogle Scholar
  41. 41.
    Densmore, A.; Xu, D.-X.; Janz, S.; Waldron, P.; Mischki, T.; Lopinski, G.; Delâge, A.; Lapointe, J.; Cheben, P.; Lamontagne, B.; Schmid, J. H, Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response, Opt. Lett. 2008, 6, 596–598CrossRefGoogle Scholar
  42. 42.
    Densmore, A.; Xu, D.-X.; Waldron, P.; Janz, S.; Delâge, A.; Cheben, P.; Lapointe, J., Thin silicon waveguides for biological and chemical sensing, In Proceedings of the SPIE Photonics West, paper 6477–43, SPIE, Bellingham, WA, 2007Google Scholar
  43. 43.
    Almeida, V. R.; Xu, Q.; Barrios, C. A.; Lipson, M., Guiding and confining light in void nanostructure, Opt. Lett. 2004, 29, 1209–1211CrossRefGoogle Scholar
  44. 44.
    Barrios, C. A.; Banuls, M. J.; Gonzalez-Pedro, V.; Gylfasson, K. B.; Sanchez, B.; Griol, A.; Maquieira, A.; Sohlstom, H.; Holgado, M.; Casquel, R.; Label-free optical biosensing with slot-waveguides, Opt. Lett. 2008, 33, 708–710CrossRefGoogle Scholar
  45. 45.
    Robinson, J. T.; Chen, L.; Lipson, M., On-chip gas detection in silicon optical microcavities, In Proceedings of the Conference on Lasers and Electro-optics, paper CMJJ6, Optical Society of America, Washington, DC, 2008Google Scholar
  46. 46.
    Cooper, J. M.; Shen, J.; Young, F. M.; Connolly, P.; Barker, J. R.; Moores, G., The imaging of streptavidin and avidin using scanning tunneling microscopy, J. Mater. Sci.: Mater. Electron. 1994, 5, 106–110Google Scholar
  47. 47.
    Schaaf, P.; Talbot, J., Surface exclusion effects in adsorption processes, J. Chem. Phys. 1989, 91, 4401–4409CrossRefGoogle Scholar
  48. 48.
    Ramsden, J. J., Review of new experimental techniques for investigating random sequential adsorption, J. Statist. Phys. 1993, 73, 853–877CrossRefGoogle Scholar
  49. 49.
    Little, B. E.; Chu, S. T.; Haus, H. A.; Foresi, J.; Laine, J.-P., Microring resonator channel dropping filters, J. Lightwave Technol. 1997, 15, 998–1005CrossRefGoogle Scholar
  50. 50.
    Rabiei, P.; Steier, W.; Zhang, C.; Dalton, L. R., Polymer micro-ring filters and modulators, J. Lightwave Technol. 2002, 20, 1968–1975CrossRefGoogle Scholar
  51. 51.
    Xu Q.; Lipson, M., All-optical logic based on silicon micro-ring resonators, Opt. Express, 2007, 15, 924–929CrossRefGoogle Scholar
  52. 52.
    Blair, S.; Heebner, J. E.; Boyd, R. W., Beyond the absorption-limited nonlinear phase shift with microring resonators, Opt. Lett. 2002, 27, 357–359CrossRefGoogle Scholar
  53. 53.
    Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M., Micrometre-scale silicon electro-optic modulator, Nature 2005, 435, 325–327CrossRefGoogle Scholar
  54. 54.
    Yariv, A., Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electron. Lett. 2000, 36, 321–323CrossRefGoogle Scholar
  55. 55.
    Ksendzov, A.; Homer, M. L.; Manfreda, A. M., Integrated optics ring-resonator chemical sensor with polymer transduction layer, Electron. Lett. 2004, 40, 63–65CrossRefGoogle Scholar
  56. 56.
    Yalcin, A.; Popat, K. C.; Aldridge, J. C.; Desai, T. A.; Hryniewicz, J.; Chbouki, N.; Little, B. E.; King, O.; Van, V.; Chu, S.; Gill, D.; Anthes-Washburn, M.; Unlu, M. S.; Goldberg, B. B., Optical sensing of biomolecules using microring resonators, IEEE J. Selected Topics Quant. Electron. 2006, 12, 148–155CrossRefGoogle Scholar
  57. 57.
    De Vos, K.; Bartolozzi, I.; Schacht, E.; Bienstman, P.; Baets, R., Silicon-on-insulator microring resonator for sensitive and label-free biosensing, Optics Exp. 2007, 15, 7610–7615CrossRefGoogle Scholar
  58. 58.
    Dumon, P.; Bogaerts, W.; Wiaux, V.; Wouters, J.; Beckx, S.; van Campenhout, J.; Taillaert, D.; Luyssaert, B.; Bienstman, P.; van Thourhout, D.; Baets, R.; Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography, IEEE Photonic Technol. Lett. 2004, 16, 1328–1330CrossRefGoogle Scholar
  59. 59.
    Niehhusmann, J.; Vorckel, A.; Bolivar, P. H.; Wahlbrink, T.; Henschel, W.; Kurz, H., Ultra-high qulaity factor silicon-on-insulator microring resonator, Opt. Lett. 2004, 29, 2861–2863CrossRefGoogle Scholar
  60. 60.
    Xu, D.-X.; Densmore, A.; Waldron, P.; Lapointe, J.; Post, E.; Delâge, A.; Janz, S.; Cheben, P.; Schmid, J. H.; Lamontagne, B., High bandwidth SOI photonic wire ring resonators using MMI couplers, Opt. Express 2007, 15, 3149–3155CrossRefGoogle Scholar
  61. 61.
    Xu, D.-X.; Janz, S.; Cheben, P.; Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering, IEEE Photonic Technol. Lett. 2006, 18, 343–345CrossRefGoogle Scholar
  62. 62.
    Xu, D.-X.; Post, E.; Densmore, A.; Waldron, P.; Janz, S.; Lapointe, J.; Delâge, A.; Cheben, P.; Schmid, J. H., Cancellation of the temperature dependence in SOI photonic wire waveguide ring resonator biological sensors, accepted, In Proceedings of the IEEE/LEOS Conference on Group IV Photonics, IEEE, Piscataway, NJ, 2008Google Scholar
  63. 63.
    Xu, D.-X.; Densmore, A.; Delâge, A.; Waldron, P.; Janz, S.; Lapointe, J.; Lopinski, G.; Mischki, T.; McKinnon, R.; Cheben, P.; Schmid, J. H., Folded cavity SOI microring resonator sensors for high sensitivity and real time measurement of biomolecular binding, Opt. Express 2008, 16, 15137–15148CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Janz
    • 1
  • A. Densmore
    • 1
  • D.-X. Xu
    • 1
  • P. Waldron
    • 1
  • J. Lapointe
    • 1
  • J. H. Schmid
    • 1
  • T. Mischki
    • 1
  • G. Lopinski
    • 1
  • A. Delâge
    • 1
  • R. McKinnon
    • 1
  • P. Cheben
    • 1
  • B. Lamontagne
    • 1
  1. 1.Institute for Microstructural Sciences, National Research Council CanadaOttawaCanada

Personalised recommendations