Advertisement

Label-Free Biochemical Sensors Based on Optical Microresonators

  • Chung-Yen Chao
  • Tao Ling
  • L. Jay Guo
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Biochemical sensors play a significant role in extensive applications that have tight relationship with human life. These sensors require high sensitivity and low detection limit. In this chapter, two optical sensors that meet the requirement will be discussed: polymer microring biochemical sensors and microtube resonator sensors. Both have advantages of high sensitivity, label-free detection capability, low cost, robustness, and simple fabrication process. The former devices show high sensitivity over 70 nm per RIU and low detection limit as 250 pg mm−2, while the latter ones can push sensitivity to 600 nm per RIU. Moreover, polymer microring biochemical sensors are compact and integrable in an array on a substrate; while microtube-based sensors have built-in fluidic handling capability. These features facilitate the development of miniature and highly sensitive lab-on-a-chip sensors.

Keywords

Resonant Mode Resonant Wavelength Slot Waveguide Resonance Shift Microring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank the support by the AFOSR and a University of Michigan Life Science Institute and Fisher-Thermo Pilot grant. We would also like to thank Wayne Fung for his assistance in the microring biosensor experiment, and Dr. Michael Mayer and Sheereen Majdzarringhalamaraghy for providing the liposome and membrane protein samples used in the microtube sensor experiment.

References

  1. 1.
    Collins, A. F.; Caruso, F., Biosensors: Recent advances, Rep. Prog. Phys. 1997, 60, 1397–1445CrossRefGoogle Scholar
  2. 2.
    Ramsden, J. J., Optical biosensors, J. Mol. Recognit. 1997, 10, 109–120CrossRefGoogle Scholar
  3. 3.
    Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and trends for future development, Fresenius J. Anal. Chem. 1998, 362, 349–373CrossRefGoogle Scholar
  4. 4.
    Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: Review, Sens. Actuators B. 1999, 54, 3–15CrossRefGoogle Scholar
  5. 5.
    Homola, J., Surface Plasmon Resonance Based Sensors, Springer, Berlin, 2006 CrossRefGoogle Scholar
  6. 6.
    Yin, D.-L.; Deamer, D. W.; Schmidt, H.; Barber, J. P.; Hawkins, A. R., Single-molecule detection sensitivity using planar integrated optics on a chip, Opt. Lett. 2006, 31, 2136–2138CrossRefGoogle Scholar
  7. 7.
    Luff, B. J.; Wilkinson, J. S.; Piehler, J.; Hollenbach, U.; Ingenhoff, J.; Fabricius, N., Integrated optical Mach-Zehnder Biosensor, J. Lightwave Technol. 1998, 16, 583–592CrossRefGoogle Scholar
  8. 8.
    Densmore, A.; Xu, D.-X.; Waldron, P.; Janz, S.; Cheben, P.; Lapointe, J.; Delage, A.; Lamontagne, B.; Schmid, J. H.; Post, E., A silicon-on-insulator photonic wire based evanescent field sensor, IEEE Photon. Technol. Lett. 2006, 18, 2520–2522CrossRefGoogle Scholar
  9. 9.
    Voros, J.; Ramsden, J. J.; Csucs, G.; Szendro, I.; De Paul, S. M.; Textor, M.; Spencer, N. D., Optical grating coupler biosensors, Biomaterials 2002, 23, 3699–3710CrossRefGoogle Scholar
  10. 10.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Optical waveguide sensor for on-line monitoring of bacteria, Opt. Lett. 2003, 28, 1233–1235CrossRefGoogle Scholar
  11. 11.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing, Appl. Phys. Lett. 2005, 86, 071101CrossRefGoogle Scholar
  12. 12.
    Blair, S.; Chen, Y., Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities, Appl. Opt. 2001, 40, 570–582CrossRefGoogle Scholar
  13. 13.
    Boyd, R. W.; Heebner, J. E., Sensitive disk resonator photonic biosensor, Appl. Opt. 2001, 40, 5742–5747CrossRefGoogle Scholar
  14. 14.
    Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787CrossRefGoogle Scholar
  15. 15.
    Vollmer, F.; Braun, D.; Libchaber, A.; Khoshsima, M.; Teraoka, I.; Arnold, S., Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 2002, 80, 4057–4059CrossRefGoogle Scholar
  16. 16.
    Nadeau, J. L.; Iltchenko, V. S.; Kossakovski, D.; Bearman, G. H.; Maleki, L., High-Q whispering-gallery mode sensor in liquids, Proc. SPIE 2002, 4629, 172–180CrossRefGoogle Scholar
  17. 17.
    Noto, M.; Vollmer, F.; Keng, D.; Teraoka, I.; Arnold, S., Nanolayer characterization through wavelength multiplexing of microsphere resonator, Opt. Lett. 2005, 30, 510–512CrossRefGoogle Scholar
  18. 18.
    Krioukov, E.; Klunder, D. J. W.; Driessen, A.; Greve, J.; Otto, C., Integrated optical microcavities for enhanced evanescent-wave spectroscopy, Opt. Lett. 2002, 27, 1504–1506CrossRefGoogle Scholar
  19. 19.
    Krioukov, E.; Klunder, D. J. W.; Driessen, A.; Greve, J.; Otto, C., Sensor based on an integrated optical microcavity, Opt. Lett. 2002, 27, 512–514CrossRefGoogle Scholar
  20. 20.
    Fang, W.; Buchholz, D. B.; Bailey, R. C.; Hupp, J. T.; Chang, R. P. H.; Cao, H., Detection of chemical species using ultraviolet microdisk lasers, Appl. Phys. Lett. 2004, 85, 3666–3668CrossRefGoogle Scholar
  21. 21.
    Yalcin, A.; Popat, K. C.; Aldridge, J. C.; Desai, T. A.; Hryniewicz, J.; Chbouki, N.; Little, B. E.; King, O.; Van, V.; Chu, S.; Gill, D.; Anthes-Washburn, M.; Unlu, M. S.; Goldberg, B. B., Optical sensing of biomolecules using microring resonators, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 148–155CrossRefGoogle Scholar
  22. 22.
    Fan, X.; White, I. M.; Zhu, H.; Suter, J. D.; Oveys, H., Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. SPIE 2007, 6452, 64520MCrossRefGoogle Scholar
  23. 23.
    Rafizadeh, D.; Zhang, J. P.; Hagness, S. C.; Taflove, A.; Stair, K. A.; Ho, S. T.; Tiberio, R. C., Waveguide-coupled AlGaAs/GaAs microcavity ring and disk resonators with high finesse and 21.6-nm free spectral range, Opt. Lett. 1997, 22, 1244–1246CrossRefGoogle Scholar
  24. 24.
    Choi, S. J.; Djordjev, K.; Peng, Z.; Yang, Q.; Choi, S. J.; Dapkus, P. D., Laterally coupled buried heterostructure high-Q ring resonators, IEEE Photon. Technol. Lett. 2004, 16, 2266–2268CrossRefGoogle Scholar
  25. 25.
    Niehusmann, J.; Vorckel, A.; Bolivar, P. H.; Wahlbrink, T.; Henschel, W.; Kurz, H., Ultrahigh-quality-factor silicon-on-insulator microring resonator, Opt. Lett. 2004, 29, 2861–2863CrossRefGoogle Scholar
  26. 26.
    Baehr-Jones, T.; Hochberg, M.; Walker, C.; Scherer, A., High-Q ring resonators in thin silicon-on-insulator, Appl. Phys. Lett. 2004, 85, 3346–3348CrossRefGoogle Scholar
  27. 27.
    Almeida, V. R.; Barrios, C. A.; Panepucci, R. R.; Lipson, M., All-optical control of light on a silicon chip, Nature 2004, 431, 1081–1084CrossRefGoogle Scholar
  28. 28.
    Klunder, D. J. W.; Tan, F. S.; van der Veen, T.; Bulthuis, H. F.; Sengo, G.; Docter, B.; Hoekstra, H. J. W. M.; Driessen, A., Experimental and numerical study of SiON microresonators with air and polymer cladding, J. Lightwave Technol. 2003, 21, 1099–1110CrossRefGoogle Scholar
  29. 29.
    Barwicz, T.; Popovic, M. A.; Rakich, P. T.; Watts, M. R.; Haus, H. A.; Ippen, E. P.; Smith, H. I., Microring-resonator-based add-drop filters in SiN: Fabrication and analysis, Opt. Exp. 2004, 12, 1437–1442CrossRefGoogle Scholar
  30. 30.
    Chu, S. T.; Little, B. E.; Pan, W.; Kaneko, T.; Kokubun, Y., Cascaded microring resonators for crosstalk reduction and spectrum cleanup in add-drop filters, IEEE Photon. Technol. Lett. 1999, 11, 1423–1425CrossRefGoogle Scholar
  31. 31.
    Rabiei, P.; Steier, W. H.; Zhang, C.; Dalton, L. R., Polymer micro-ring filters and modulators, J. Lightwave Technol. 2002, 20, 1968–1975CrossRefGoogle Scholar
  32. 32.
    Huang, Y.; Paloczi, G. T.; Scheuer, J.; Yariv, A., Soft lithography replication of polymeric microring optical resonators, Opt. Exp. 2003, 11, 2452–2458CrossRefGoogle Scholar
  33. 33.
    Xu, Q.; Fattal, D.; Beausoleil, R. G., Silicon microring resonators with 1.5-μm radius, Opt. Exp. 2008, 16, 4309–4315CrossRefGoogle Scholar
  34. 34.
    Nishihara, H.; Haruna, M.; Suhara, T., Optical Integrated Circuits, McGraw-Hill, New York, NY, 1989 Google Scholar
  35. 35.
    Chao, C. Y., Simple and effective calculation of modal properties of bent slot waveguides, J. Opt. Soc. Am. B 2007, 24, 2373–2377CrossRefGoogle Scholar
  36. 36.
    Adhikari, B.; Majumdar, S., Polymers in sensor applications, Prog. Polym. Sci. 2004, 29, 699–766CrossRefGoogle Scholar
  37. 37.
    Okamoto, K., Fundamentals of Optical Waveguides, Academic, San Diego, CA, 2000Google Scholar
  38. 38.
    Chou, S. Y.; Krauss, P. R.; Zhang, W.; Guo, L. J.; Zhuang, L., Sub-10 nm imprint lithography and applications, J. Vac. Sci. Technol. B 1997, 15, 2897–2904CrossRefGoogle Scholar
  39. 39.
    Guo, L. J., Topical review: Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys. 2004, 37, R123–R141CrossRefGoogle Scholar
  40. 40.
    Hirai, Y.; Konishi, T.; Yoshikawa, T.; Yoshida, S., Simulation and experimental study of polymer deformation in nanoimprint lithography, J. Vac. Sci. Technol. B 2004, 22, 3288–3293CrossRefGoogle Scholar
  41. 41.
    Guo, L. J., Nanoimprint lithography: Methods and material requirement, Adv. Mater. 2007, 19, 495–513CrossRefGoogle Scholar
  42. 42.
    Chao, C. Y.; Guo, L. J., Polymer micro-ring resonators fabricated by nanoimprint technique, J. Vac. Sci. Technol. B 2002, 20, 2862–2866CrossRefGoogle Scholar
  43. 43.
    Chao, C. Y.; Fung, W.; Guo, L. J., Polymer microring resonators for biochemical sensing applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 134–142CrossRefGoogle Scholar
  44. 44.
    Chao, C. Y.; Guo, L. J., Reduction of surface scattering loss in polymer microrings using thermal-reflow technique, IEEE Photon. Technol. Lett. 2004, 16, 1498–1500CrossRefGoogle Scholar
  45. 45.
    Chao, C. Y.; Guo, L. J., Design and optimization of microring resonators in biochemical sensing applications, J. Lightwave Technol. 2006, 24, 1395–1401CrossRefGoogle Scholar
  46. 46.
    Little, B. E.; Chu, S. T.; Haus, H. A.; Foresi, J.; Laine, J.-P., Microring resonator channel dropping filters, J. Lightwave Technol. 1997, 15, 998–1005CrossRefGoogle Scholar
  47. 47.
    Van, V.; Absil, P. P.; Hryniewicz, J. V.; Ho, P.-T., Propagation loss in single-mode GaAs-AlGaAs microring resonators: Measurement and model, J. Lightwave Technol. 2001, 19, 1734–1739CrossRefGoogle Scholar
  48. 48.
    Chao, C. Y.; Guo, L. J., Thermal-flow technique for reducing surface roughness and controlling gap size in polymer microring resonators, Appl. Phys. Lett. 2004, 84, 2479–2481CrossRefGoogle Scholar
  49. 49.
    Chao, C. Y.; Guo, L. J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonances, Appl. Phys. Lett. 2003, 83, 1527–1529CrossRefGoogle Scholar
  50. 50.
    Lide, D. R., CRC Handbook of Chemistry and Physics, 88th edn.; CRC, Cleveland, OH, 2007Google Scholar
  51. 51.
    Diamandis, E. P.; Christopoulos, T. K., The biotin-(strept)avidin system: Principles and applications in biotechnology, Clin. Chem. 1991, 37, 625–636Google Scholar
  52. 52.
    Peters, T., Jr., All About Albumin: Biochemistry, Genetics, and Medical Applications, Academic, San Diego, CA, 1996 Google Scholar
  53. 53.
    Yang, V. C.; Ngo, T. T., Biosensors and Their Applications, Kluwer/Plenum, New York, NY, 2000 CrossRefGoogle Scholar
  54. 54.
    Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 1961, 124, 1866–1878CrossRefGoogle Scholar
  55. 55.
    Fan, S., Sharp asymmetric lineshapes in side-coupled waveguide-cavity systems, Appl. Phys. Lett. 2002, 80, 908–910CrossRefGoogle Scholar
  56. 56.
    Chiba, A.; Fujiwara, H.; Hotta, J.; Takeuchi, S.; Sasaki, K., Fano resonance in a multimode tapered fiber coupled with a microspherical cavity, Appl. Phys. Lett. 2005, 86, 261106CrossRefGoogle Scholar
  57. 57.
    Liang, W.; Yang, L.; Poon, J. K.; Huang, Y.; Vahala, K. J.; Yariv, A., Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled systems, Opt. Lett. 2006, 31, 510–512CrossRefGoogle Scholar
  58. 58.
    Rezzonico, D.; Jazbinsek, M.; Guarino, A.; Kwon, O.; Gunter, P., Electro-optic Charon polymeric microring modulators, Opt. Exp. 2008, 16, 613–627CrossRefGoogle Scholar
  59. 59.
    Almeida, V. R.; Xu, Q.; Barrios, C. A.; Lipson, M., Guiding and confining light in void nanostructure, Opt. Lett. 2004, 29, 1209–1211CrossRefGoogle Scholar
  60. 60.
    Xu, Q.; Almeida, V. R.; Panepucci, R. R.; Lipson, M., Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 2004, 29, 1626–1628CrossRefGoogle Scholar
  61. 61.
    Baehr-Jones, T.; Hochberg, M.; Walker, C.; Scherer, A., High-Q optical resonators in silicon-on-insulator-based slot waveguides, Appl. Phys. Lett. 2005, 86, 081101CrossRefGoogle Scholar
  62. 62.
    Dell'Olio, F.; Passaro, V. M. N., Optical sensing by optimized silicon slot waveguide, Opt. Exp. 2007, 15, 4977–4993CrossRefGoogle Scholar
  63. 63.
    Feng, N.-N., Michel, J.; Kimerling, L. C., Optical field concentration in low-index waveguides, IEEE J. Quantum Electron. 2006, 42, 885–890CrossRefGoogle Scholar
  64. 64.
    Robinson, J. T.; Chen, L.; Lipson, M., On-chip gas detection in silicon optical microcavities, Opt. Exp. 2008, 16, 4296–4301CrossRefGoogle Scholar
  65. 65.
    White, I. M.; Suter, J. D.; Oveys, H.; Fan, X., Universal coupling between metal-clad waveguide and optical ring resonators, Opt. Express 2007, 15, 646–651CrossRefGoogle Scholar
  66. 66.
    White, I. M.; Oveys, H.; Fan, X., Liquid-core optical ring-resonator sensors, Opt. Lett. 2006, 31, 1319–1321CrossRefGoogle Scholar
  67. 67.
    Liang, W.; Huang, Y. Y.; Xu, Y.; Lee, R. K.; Yariv, A., High sensitive fiber Bragg grating refractive index sensors, Appl. Phys. Lett. 2005, 86, 151122CrossRefGoogle Scholar
  68. 68.
    Ling, T.; Guo, L. J., A unique resonance mode observed in a prism coupled micro-tube resonator sensor with superior index sensitivity, Opt. Exp. 2007, 15, 17427–17432CrossRefGoogle Scholar
  69. 69.
    Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles, Wiley, New York, NY, 1998 CrossRefGoogle Scholar
  70. 70.
    Barber, P. W.; Hill, S. C., Light Scattering by Particles: Computational Methods, World Scientific, Teaneck, NJ, 1990 Google Scholar
  71. 71.
    Moon, H. J.; An, K., Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder, Appl. Phys. Lett. 2002, 80, 3250–3252CrossRefGoogle Scholar
  72. 72.
    Teraoka, I.; Arnold, S., Enhancing the sensitivity of a whispering gallery mode microsphere sensor by a high-refractive-index surface layer, J. Opt. Soc. Am. B 2006, 23, 1434–1441CrossRefGoogle Scholar
  73. 73.
    Teraoka, I.; Arnold, S., Theory of resonance shifts in TE and TM whispering gallery modes by nonradial perturbations for sensing applications, J. Opt. Soc. Am. B 2006, 23, 1381–1389CrossRefGoogle Scholar
  74. 74.
    Voges, D.; Beredes, R.; Burger, A.; Demange, P.; Baumeister, W.; Huber, R., Three-dimensional structure of membrane-bound annexin V. A correlative electron microscopy-X-ray crystallography study, J. Mol. Biol. 1994, 238, 199–213CrossRefGoogle Scholar
  75. 75.
    Cheng, X.; Guo, L. J., Electrostatic self assembly of nano-composite polymer in grating structure, J. Vac. Sci. Technol. B 2001, 19, 2736–2740CrossRefGoogle Scholar
  76. 76.
    Howland, M. C.; Szmodis, A. W.; Sanii, B.; Parikh, A. N., Characterization of physical properties of supported phospholipid membranes using imaging ellipsometry at optical wavelengths, Biophys. J. 2007, 92, 1306–1317CrossRefGoogle Scholar
  77. 77.
    Miyashita, T.; Mizuta, Y.; Matsuda, M., Studies on Langmuir-Blodgett multilayer formation from preformed poly(N-alkylacrylamides), Br. Polym. J. 1990, 22, 327–331CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chung-Yen Chao
    • 1
  • Tao Ling
    • 1
  • L. Jay Guo
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA

Personalised recommendations