Miniaturized Optical Fiber Inline Interferometers for Chemical Sensing

  • Hai Xiao
  • Tao Wei
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter reviews the miniaturized optical fiber inline interferometers for chemical sensing based on the detection of composition variation induced refractive index changes. When used as chemical sensors, these miniaturized devices have the common advantages of small size, all-glass ruggedized structure, high sensitivity, fast response time, and large dynamic range. These advantages make them particularly attractive for real-world applications where, in situ, continuous monitoring is required. Specifically, two general types of interferometers are reviewed including the low-finesse Fabry-Perot interferometer and the core-cladding mode interferometer. The operation principles of these two types of interferometers are described. The signal processing methods are discussed. The representative structures, fabrication methods, and application examples of each interferometer type are provided with certain level of details. The advantages and disadvantages of each sensor structure are also highlighted in the discussions, with the hope that innovative researches will be stimulated to solve the technical challenges and explore future applications of these devices.


Interference Fringe Interference Signal Photonic Crystal Fiber Core Mode Refractive Index Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lee, C. E.; Taylor, H. F., Interferometric optical fiber sensors using internal mirrors, Electron. Lett. 1988, 24, 193–194CrossRefGoogle Scholar
  2. 2.
    Claus, R. O.; Gunther, M. F.; Wang, A.; Murphy, K. A., Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements for ?200 to 900°C, J. Smart Mater. Struct 1992, 1, 237–242CrossRefGoogle Scholar
  3. 3.
    Xiao, H.; Deng, J.; Pickrell, G.; May, R. G.; Wang, A., Single-crystal sapphire fiber-based strain sensor for high-temperature applications, J. Lightwave Technol. 2003, 21, 2276–2283CrossRefGoogle Scholar
  4. 4.
    Wang, A.; Xiao, H.; Wang, J.; Wang, Z.; Zhao, W.; May, R. G., Self-calibrated interferometric-intensity-based optical fiber sensors, J. Lightwave Technol. 2001, 19, 1495–1501CrossRefGoogle Scholar
  5. 5.
    Hecht, E. Optics, 4th edn.; Addison Wesley, New York, NY, 2002 Google Scholar
  6. 6.
    Qi, B.; Pickrell, G. R.; Xu, J.; Zhang, P.; Duan, Y.; Peng, W.; Huang, Z.; Huo, W.; Xiao, H.; May, R. G.; Wang, A., Novel data processing techniques for dispersive white light interferometer, Opt. Eng. 2003, 42, 3165–3171CrossRefGoogle Scholar
  7. 7.
    Xiao, G. Z.; Adnet, A.; Zhang, Z. Y.; Sun, F. G.; Grover, C. P., Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor, Sens. Actuators A-Phys. 2005, 118, 177–182CrossRefGoogle Scholar
  8. 8.
    Bhatia, V.; Murphy, K. A.; Claus, R. O.; Jones, M. E.; Grace, J. L.; Tran, T. A.; Greene, J. A., Optical fiber based absolute extrinsic Fabry-Perot interferometric sensing system, Meas. Sci. Technol. 1996, 7, 58–61CrossRefGoogle Scholar
  9. 9.
    Zhang, Y.; Chen, X.; Wang, Y.; Cooper, K. L.; Wang, A., Microgap multicavity Fabry-Pérot biosensor, J. Lightwave Technol. 2007, 25, 1797–1804CrossRefGoogle Scholar
  10. 10.
    Xiao, H.; Deng, J.; Wang, Z.; Huo, W.; Zhang, P.; Luo, M.; Pickroll, G. R.; May, R. G.; Wang, A., Fiber optic pressure sensor with self-compensation capability for harsh environment applications, Opt. Eng. 2005, 44, 1–10Google Scholar
  11. 11.
    Zhang, Y.; Shibru, H.; Cooper, K. L.; Wang, A., Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor, Opt. Lett. 2005, 30, 1021–1023CrossRefGoogle Scholar
  12. 12.
    Ran, Z. L.; Rao, Y. J.; Liu, W. J.; Liao, X.; Chiang, K. S., Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index, Opt. Express 2008, 16, 2252–2263CrossRefGoogle Scholar
  13. 13.
    Li, M.; Menon, S.; Nibarger, J. P.; Gibson, G.N., Ultrafast electron dynamics in femtosecond optical breakdown of dielectrics, Phys. Rev. Lett. 1999, 82, 2394–2397CrossRefGoogle Scholar
  14. 14.
    Davis, K. M.; Miura, K.; Sugimoto, N; Hirao, K., Writing waveguides in glass with a femtosecond laser, Opt. Lett. 1996, 21, 1729–1731CrossRefGoogle Scholar
  15. 15.
    Szameit, A.; Bloemer, D.; Burghoff, J.; Pertsch, T.; Nolte, S.; Lederer, F.; Tuennermann, A., Hexagonal waveguide arrays written with fs-laser pulses, Appl. Phys. B. 2006, 82, 507–512CrossRefGoogle Scholar
  16. 16.
    Cheng, Y.; Tsai, H. L.; Sugioka, K.; Midorikawa, K., Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining, Appl. Phys. A. 2006, 85, 11–14CrossRefGoogle Scholar
  17. 17.
    Sun, H.; He, F.; Zhou, Z.; Cheng, Y.; Xu, Z.; Sugioka, K.; Midorikawa, K., Fabrication of microfluidic optical waveguides on glass chips with femtosecond laser pulses, Opt. Lett. 2007, 32, 1536–1538CrossRefGoogle Scholar
  18. 18.
    Wei, T.; Han, Y.; Tsai, H. L.; Xiao, H., Miniaturized fiber inline Fabry-Perot interferometer fabricated with a femtosecond laser, Opt. Lett. 2008, 33, 536–538CrossRefGoogle Scholar
  19. 19.
    Rao, Y. J.; Deng, M.; Duan, D. W.; Yang, X. C.; Zhu, T.; Cheng, G. H., Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser, Opt. Express 2007, 15, 14123–14128CrossRefGoogle Scholar
  20. 20.
    Wei, T.; Han, Y.; Li, Y.; Tsai, H.; Xiao, H., Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement, Opt. Express 2008, 16, 5764–5769CrossRefGoogle Scholar
  21. 21.
    Hawkes, J. B.; Astherimer, R. W., Temperature coefficient of the refractive index of water, J. Opt. Soc. Am. 1948, 38, 804–806CrossRefGoogle Scholar
  22. 22.
    Liu, N.; Hui, J.; Sun, C.; Dong, J.; Zhang, L.; Xiao, H., Nanoporous zeolite thin film-based fiber intrinsic Fabry-Perot interferometric sensor for detection of dissolved organics in water, Sensors 2006, 6, 835–847CrossRefGoogle Scholar
  23. 23.
    Lee, B. H.; Nishii, J., Dependence of fringe spacing on the grating separation in a long-period fiber grating pair, Appl. Opt. 1999, 38, 3450–3459CrossRefGoogle Scholar
  24. 24.
    Allsop, T.; Reeves, R.; Webb, D. J.; Bennion, I.; Neal, R., A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer, Rev. Sci. Instrum. 2002, 73, 1702–1705CrossRefGoogle Scholar
  25. 25.
    Lee, B. H.; Nishii, J., Bending sensitivity of in-series long-period fiber gratings, Opt. Lett. 1998, 23, 1624–1626CrossRefGoogle Scholar
  26. 26.
    Swart, P. L. Long-period grating Michelson refractometric sensor, Meas. Sci. Technol. 2004, 15, 1576–1580CrossRefGoogle Scholar
  27. 27.
    Tian, Z.; Yam, S. S.; Barnes, J.; Bock, W.; P. Greig; J. M. Fraser; H. P. Loock; R. D. Oleschuk, Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers, IEEE Photon. Technol. Lett. 2008, 20, 626CrossRefGoogle Scholar
  28. 28.
    Tian, Z.; Yam, S. S.; Loock, H., Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber, Opt. Lett. 2008, 33, 1105–1107CrossRefGoogle Scholar
  29. 29.
    Villatoro, J.; Monzón-Hernández, D., Low-cost optical fiber refractive-index sensor based on core diameter mismatch, J. Lightwave Technol. 2006, 24, 1409CrossRefGoogle Scholar
  30. 30.
    Tian, Z.; Yam, S. S.; Loock, H. P., Single-mode fiber refractive index sensor based on core-offset attenuators, IEEE Photon. Technol. Lett. 2008, 20, 1387–1389CrossRefGoogle Scholar
  31. 31.
    Choi, H. Y.; Kim, M. J.; Lee, B. H., All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber, Opt. Express 2007, 15, 5711–5720CrossRefGoogle Scholar
  32. 32.
    Li, E.; Wang, X.; Zhang, C., Fiber-optic temperature sensor based on interference of selective higher-order modes, Appl. Phys. Lett. 2006, 89, 091119Google Scholar
  33. 33.
    Kim, Y.; Paek, U.; Lee, B. H., Measurement of refractive-index variation with temperature by use of long-period fiber gratings, Opt. Lett. 2002, 27, 1297–1299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hai Xiao
    • 1
  • Tao Wei
    • 1
  1. 1.Department of Electrical and Computer EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations