Skip to main content

Rapid Chemical Vapor Detection Using Optofluidic Ring Resonators

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

The optofluidic ring resonator (OFRR) is a novel gas sensing technology platform. In an OFRR gas sensor, the OFRR interior surface is coated with a layer of vapor-sensitive polymer. The interaction between the polymer and the gas molecules flowing through the OFRR results in a change in polymer refractive index and thickness, which can be detected by the circulating waveguide modes supported by the circular cross section of the OFRR. Due to the excellent fluidics of a capillary, the OFRR is capable of detecting chemical vapors rapidly with very low sample volume. In addition, the OFRR is highly compatible with gas chromatography (GC) and is a promising platform for development of micro-GC (μGC) with unique multipoint, on-column detection capability. In this chapter, we will discuss the fundamental operational principles of the OFRR gas sensor, followed by examples of rapid detection of several representative vapor analytes. The development of an OFRR-based μGC system and its applications in explosive separation and detection will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stetter, J. R.; Li, J., Amperometric gas sensors-a review, Chem. Rev. 2008, 108, 352–366

    Article  CAS  Google Scholar 

  2. Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A., Photonic microharp chemical sensors, Opt. Express 2008, 16, 2423–2430

    Article  CAS  Google Scholar 

  3. Mah, C.; Thurbide, K. B., Acoustic methods of detection in gas chromatography, J. Separ. Sci. 2006, 29, 1922–1930

    Article  CAS  Google Scholar 

  4. Warken, F.; Vetsch, E.; Meschede, D.; Sokolowski, M.; Rauschenbeutel, A., Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers, Opt. Express 2007, 15, 11952–11958

    Article  CAS  Google Scholar 

  5. Joel, V.; Monzón-Hernández, D., Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt. Express 2005, 13, 5087–5092

    Article  Google Scholar 

  6. Carlson, R. C.; Hayden, A. F.; Telfair, W. B., Remote observations of effluents from small building smokestacks using FTIR spectroscopy, Appl. Opt. 1988, 27, 4952–4959

    Article  CAS  Google Scholar 

  7. Schliesser, A.; Brehm, M.; Keilmann, F.; van der Weide, D., Frequency-comb infrared spectrometer for rapid, remote chemical sensing, Opt. Express 2005, 13, 9029–9038

    Article  CAS  Google Scholar 

  8. Pushkarsky, M. B., Dunayevskiy, I. G., Prasanna, M., Tsekoun, A. G., Go, R., Patel, C. K. N., High-sensitivity detection of TNT, Proc. Natl Acad. Sci. USA 2006, 103, 19630–19634

    Article  CAS  Google Scholar 

  9. Ramos, C.; Dagdigian, P. J., Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy, Appl. Opt. 2007, 46, 620–627

    Article  CAS  Google Scholar 

  10. Stephane Content, W. C. T. M. J. S., Detection of nitrobenzene, DNT and TNT vapors by quenching of porous silicon photoluminescence, Chem - Eur. J. 2000, 6, 2205–2213

    Article  Google Scholar 

  11. Lipp, E. D.; Grosse, R. L., On-line monitoring of chlorosilane streams by Raman spectroscopy, Appl. Spectrosc. 1998, 52, 42–46

    Article  CAS  Google Scholar 

  12. Roth, E.; Kiefer, W., Surface-enhanced Raman spectroscopy as a detection method in gas chromatography, Appl. Spectrosc. 1994, 48, 1193–1195

    Article  CAS  Google Scholar 

  13. Skivesen, N.; Horvath, R.; Pedersen, H. C., Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Opt. Lett. 2003, 28, 2473–2475

    Article  Google Scholar 

  14. Lowder, T. L.; Gordon, J. D.; Schultz, S. M.; Selfridge, R. H., Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer, Opt. Lett. 2007, 32, 2523–2525

    Article  CAS  Google Scholar 

  15. Butler, T. M.; Igata, E.; Sheard, S. J.; Blackie, N., Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure, Opt. Lett. 1999, 24, 525–527

    Article  CAS  Google Scholar 

  16. Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M.; Guerra, G., Coated long-period fiber gratings as high-sensitivity optochemical sensors, J. Lightwave Technol. 2006, 24, 1776–1786

    Article  CAS  Google Scholar 

  17. Zhang, J.; Tang, X.; Dong, J.; Wei, T.; Xiao, H., Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical, Opt. Express 2008, 16, 8317–8323

    Article  CAS  Google Scholar 

  18. Wei, T.; Han, Y.; Li, Y.; Tsai, H.-L.; Xiao, H., Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement, Opt. Express 2008, 16, 5764–5769

    Article  CAS  Google Scholar 

  19. Xiao, G. Z.; Adnet, A.; Zhang, Z.; Sun, F. G.; Grover, C. P., Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Pérot interferometer sensor, Sens. Actuators A: Phys. 2005, 118, 177–182

    Article  CAS  Google Scholar 

  20. Cross, G. H.; Ren, Y.; Swann, M. J., Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films, Analyst 2000, 125, 2173–2175

    Article  CAS  Google Scholar 

  21. Reichl, D.; Krage, R.; Krumme, C.; Gauglitz, G., Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup, Appl. Spectrosc. 2000, 54, 583–586

    Article  CAS  Google Scholar 

  22. Podgorsek, R. P.; Franke, H., Selective optical detection of aromatic vapors, Appl. Opt. 2002, 41, 601–608

    Article  CAS  Google Scholar 

  23. Ksendzov, A.; Homer, M. L.; Manfreda, A. M., Integrated optics ring-resonator chemical sensor with polymer transduction layer, Electron. Lett. 2004, 40, 63–65

    Article  Google Scholar 

  24. Passaro, V. M. N.; Dell'Olio, F.; Leonardis, F. D., Ammonia optical sensing by microring resonators, Sensors 2007, 7, 2741–2749

    Article  CAS  Google Scholar 

  25. Pang, F.; Han, X.; Chu, F.; Geng, J.; Cai, H.; Qua, R.; Fang, Z., Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method, Sens. Actuators B 2007, 120, 610–614

    Article  CAS  Google Scholar 

  26. Chen, A.; Sun, H.; Pyayt, A.; Zhang, X.; Luo, J.; Jen, A.; Sullivan, P. A.; Elangovan, S.; Dalton, L. R.; Dinu, R.; Jin, D.; Huang, D., Chromophore-containing polymers for trace explosive sensors, J. Phys. Chem. C 2008, 112, 8072–8078

    Article  Google Scholar 

  27. Shopova, S. I.; White, I. M.; Sun, Y.; Zhu, H.; Fan, X.; Frye-Mason, G.; Thompson, A.; Ja, S.-j., On-column micro gas chromatography detection with capillary-based optical ring resonators, Anal. Chem. 2008, 80, 2232–2238

    Article  CAS  Google Scholar 

  28. Sun, Y.; Shopova, S. I.; Frye-Mason, G.; Fan, X., Rapid chemical vapor sensing using optofluidic ring resonators, Opt. Lett. 2008, 33, 788–790

    Article  CAS  Google Scholar 

  29. Sun, Y.; Fan, X., Analysis of ring resonators for chemical vapor sensor development, Opt. Express 2008, 16, 10254–10268

    Article  CAS  Google Scholar 

  30. Chang, R. K.; Campillo, A. J., Optical Processes in Microcavities, World Scientific, Singapore, 1996

    Google Scholar 

  31. Gordon, J. D.; Lowder, T. L.; Selfridge, R. H.; Schultz, S. M., Optical d-fiber-based volatile organic compound sensor, Appl. Opt. 2007, 46, 7805–7810

    Article  CAS  Google Scholar 

  32. Reidy, S.; Lambertus, G.; Reece, J.; Sacks, R., High-performance, static-coated silicon microfabricated columns for gas chromatography, Anal. Chem. 2006, 78, 2623–2630

    Article  CAS  Google Scholar 

  33. Jaczewska, J.; Raptis, I.; Budkowski, A.; Goustouridis, D.; Raczkowska, J.; Sanopoulou, M.; Pamula, E.; Bernasik, A.; Rysz, J., Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters, Synth. Met. 2007, 157, 726–732

    Article  CAS  Google Scholar 

  34. Chaure, S.; Yang, B.; Hassan, A. K.; Ray, A. K.; Bolognesi, A., Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases, J. Phys.: Appl. Phys. 2004, 37, 1558–1562

    Article  CAS  Google Scholar 

  35. Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles, Wiley, New York, NY, 1998

    Book  Google Scholar 

  36. Zhu, H.; White, I. M.; Suter, J. D.; Dale, P. S.; Fan, X., Analysis of biomolecule detection with optofluidic ring resonator sensors, Opt. Express 2007, 15, 9139–9146

    Article  CAS  Google Scholar 

  37. Mortensen, N. A.; Xiao, S.; Pedersen, J., Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluid. 2008, 4, 117–127

    Article  CAS  Google Scholar 

  38. White, I. M.; Fan, X., On the performance quantification of resonant refractive index sensors, Opt. Express 2008, 16, 1020–1028

    Article  Google Scholar 

  39. Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027

    Article  CAS  Google Scholar 

  40. Liron, Z.; Kaushansky, N.; Frishman, G.; Kaplan, D.; Greenblatt, J., The polymer-coated SAW sensor as a gravimetric sensor, Anal. Chem. 1997, 69, 2848–2854

    Article  CAS  Google Scholar 

  41. Fan, X.; White, I. M.; Zhu, H.; Suter, J. D.; Oveys, H., Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. SPIE (Laser Resonators and Beam Control X) 2007, 6452, 64520M.1–64520M.20

    Google Scholar 

  42. Teraoka, I.; Arnold, S., Coupled whispering gallery modes in a multilayer-coated microsphere, Opt. Lett. 2007, 32, 1147–1149

    Article  Google Scholar 

  43. White, I. M.; Gohring, J.; Sun, Y.; Yang, G.; Lacey, S.; Fan, X., Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators, Appl. Phys. Lett. 2007, 91, 241104

    Article  Google Scholar 

  44. White, I. M.; Oveys, H.; Fan, X., Liquid core optical ring resonator sensors, Opt. Lett. 2006, 31, 1319–1321

    Article  Google Scholar 

  45. White, I. M.; Oveys, H.; Fan, X.; Smith, T. L.; Zhang, J., Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguide, Appl. Phys. Lett. 2006, 89, 191106

    Article  Google Scholar 

  46. Dorman, F. L.; Overton, E. B.; Whiting, J. J.; Cochran, J. W.; Gardea-Torresdey, J., Gas chromatography, Anal. Chem. 2008, 80, 4487–4497

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the National Science Foundation (ECCS-0729903). We would also like to thank Mr. Aaron Thompson from ICx Nomadics for helping setup the GC system at the University of Missouri and for the GC/MS data used in Fig. 6.14b.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sun, Y., Shopova, S.I., White, I.M., Frye-Mason, G., Fan, X. (2009). Rapid Chemical Vapor Detection Using Optofluidic Ring Resonators. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_6

Download citation

Publish with us

Policies and ethics