Rapid Chemical Vapor Detection Using Optofluidic Ring Resonators

  • Yuze Sun
  • Siyka I. Shopova
  • Ian M. White
  • Greg Frye-Mason
  • Xudong Fan
Part of the Integrated Analytical Systems book series (ANASYS)


The optofluidic ring resonator (OFRR) is a novel gas sensing technology platform. In an OFRR gas sensor, the OFRR interior surface is coated with a layer of vapor-sensitive polymer. The interaction between the polymer and the gas molecules flowing through the OFRR results in a change in polymer refractive index and thickness, which can be detected by the circulating waveguide modes supported by the circular cross section of the OFRR. Due to the excellent fluidics of a capillary, the OFRR is capable of detecting chemical vapors rapidly with very low sample volume. In addition, the OFRR is highly compatible with gas chromatography (GC) and is a promising platform for development of micro-GC (μGC) with unique multipoint, on-column detection capability. In this chapter, we will discuss the fundamental operational principles of the OFRR gas sensor, followed by examples of rapid detection of several representative vapor analytes. The development of an OFRR-based μGC system and its applications in explosive separation and detection will also be presented.


Polymer Layer Ring Resonator Refractive Index Change Vapor Molecule Refractive Index Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge support from the National Science Foundation (ECCS-0729903). We would also like to thank Mr. Aaron Thompson from ICx Nomadics for helping setup the GC system at the University of Missouri and for the GC/MS data used in Fig. 6.14b.


  1. 1.
    Stetter, J. R.; Li, J., Amperometric gas sensors-a review, Chem. Rev. 2008, 108, 352–366CrossRefGoogle Scholar
  2. 2.
    Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A., Photonic microharp chemical sensors, Opt. Express 2008, 16, 2423–2430CrossRefGoogle Scholar
  3. 3.
    Mah, C.; Thurbide, K. B., Acoustic methods of detection in gas chromatography, J. Separ. Sci. 2006, 29, 1922–1930CrossRefGoogle Scholar
  4. 4.
    Warken, F.; Vetsch, E.; Meschede, D.; Sokolowski, M.; Rauschenbeutel, A., Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers, Opt. Express 2007, 15, 11952–11958CrossRefGoogle Scholar
  5. 5.
    Joel, V.; Monzón-Hernández, D., Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt. Express 2005, 13, 5087–5092CrossRefGoogle Scholar
  6. 6.
    Carlson, R. C.; Hayden, A. F.; Telfair, W. B., Remote observations of effluents from small building smokestacks using FTIR spectroscopy, Appl. Opt. 1988, 27, 4952–4959CrossRefGoogle Scholar
  7. 7.
    Schliesser, A.; Brehm, M.; Keilmann, F.; van der Weide, D., Frequency-comb infrared spectrometer for rapid, remote chemical sensing, Opt. Express 2005, 13, 9029–9038CrossRefGoogle Scholar
  8. 8.
    Pushkarsky, M. B., Dunayevskiy, I. G., Prasanna, M., Tsekoun, A. G., Go, R., Patel, C. K. N., High-sensitivity detection of TNT, Proc. Natl Acad. Sci. USA 2006, 103, 19630–19634CrossRefGoogle Scholar
  9. 9.
    Ramos, C.; Dagdigian, P. J., Detection of vapors of explosives and explosive-related compounds by ultraviolet cavity ringdown spectroscopy, Appl. Opt. 2007, 46, 620–627CrossRefGoogle Scholar
  10. 10.
    Stephane Content, W. C. T. M. J. S., Detection of nitrobenzene, DNT and TNT vapors by quenching of porous silicon photoluminescence, Chem - Eur. J. 2000, 6, 2205–2213CrossRefGoogle Scholar
  11. 11.
    Lipp, E. D.; Grosse, R. L., On-line monitoring of chlorosilane streams by Raman spectroscopy, Appl. Spectrosc. 1998, 52, 42–46CrossRefGoogle Scholar
  12. 12.
    Roth, E.; Kiefer, W., Surface-enhanced Raman spectroscopy as a detection method in gas chromatography, Appl. Spectrosc. 1994, 48, 1193–1195CrossRefGoogle Scholar
  13. 13.
    Skivesen, N.; Horvath, R.; Pedersen, H. C., Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Opt. Lett. 2003, 28, 2473–2475CrossRefGoogle Scholar
  14. 14.
    Lowder, T. L.; Gordon, J. D.; Schultz, S. M.; Selfridge, R. H., Volatile organic compound sensing using a surface relief d-shaped fiber Bragg grating and a polydimethylsiloxane layer, Opt. Lett. 2007, 32, 2523–2525CrossRefGoogle Scholar
  15. 15.
    Butler, T. M.; Igata, E.; Sheard, S. J.; Blackie, N., Integrated optical Bragg-grating-based chemical sensor on a curved input edge waveguide structure, Opt. Lett. 1999, 24, 525–527CrossRefGoogle Scholar
  16. 16.
    Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M.; Guerra, G., Coated long-period fiber gratings as high-sensitivity optochemical sensors, J. Lightwave Technol. 2006, 24, 1776–1786CrossRefGoogle Scholar
  17. 17.
    Zhang, J.; Tang, X.; Dong, J.; Wei, T.; Xiao, H., Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical, Opt. Express 2008, 16, 8317–8323CrossRefGoogle Scholar
  18. 18.
    Wei, T.; Han, Y.; Li, Y.; Tsai, H.-L.; Xiao, H., Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement, Opt. Express 2008, 16, 5764–5769CrossRefGoogle Scholar
  19. 19.
    Xiao, G. Z.; Adnet, A.; Zhang, Z.; Sun, F. G.; Grover, C. P., Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Pérot interferometer sensor, Sens. Actuators A: Phys. 2005, 118, 177–182CrossRefGoogle Scholar
  20. 20.
    Cross, G. H.; Ren, Y.; Swann, M. J., Refractometric discrimination of void-space filling and swelling during vapour sorption in polymer films, Analyst 2000, 125, 2173–2175CrossRefGoogle Scholar
  21. 21.
    Reichl, D.; Krage, R.; Krumme, C.; Gauglitz, G., Sensing of volatile organic compounds using a simplified reflectometric interference spectroscopy setup, Appl. Spectrosc. 2000, 54, 583–586CrossRefGoogle Scholar
  22. 22.
    Podgorsek, R. P.; Franke, H., Selective optical detection of aromatic vapors, Appl. Opt. 2002, 41, 601–608CrossRefGoogle Scholar
  23. 23.
    Ksendzov, A.; Homer, M. L.; Manfreda, A. M., Integrated optics ring-resonator chemical sensor with polymer transduction layer, Electron. Lett. 2004, 40, 63–65CrossRefGoogle Scholar
  24. 24.
    Passaro, V. M. N.; Dell'Olio, F.; Leonardis, F. D., Ammonia optical sensing by microring resonators, Sensors 2007, 7, 2741–2749CrossRefGoogle Scholar
  25. 25.
    Pang, F.; Han, X.; Chu, F.; Geng, J.; Cai, H.; Qua, R.; Fang, Z., Sensitivity to alcohols of a planar waveguide ring resonator fabricated by a sol-gel method, Sens. Actuators B 2007, 120, 610–614CrossRefGoogle Scholar
  26. 26.
    Chen, A.; Sun, H.; Pyayt, A.; Zhang, X.; Luo, J.; Jen, A.; Sullivan, P. A.; Elangovan, S.; Dalton, L. R.; Dinu, R.; Jin, D.; Huang, D., Chromophore-containing polymers for trace explosive sensors, J. Phys. Chem. C 2008, 112, 8072–8078CrossRefGoogle Scholar
  27. 27.
    Shopova, S. I.; White, I. M.; Sun, Y.; Zhu, H.; Fan, X.; Frye-Mason, G.; Thompson, A.; Ja, S.-j., On-column micro gas chromatography detection with capillary-based optical ring resonators, Anal. Chem. 2008, 80, 2232–2238CrossRefGoogle Scholar
  28. 28.
    Sun, Y.; Shopova, S. I.; Frye-Mason, G.; Fan, X., Rapid chemical vapor sensing using optofluidic ring resonators, Opt. Lett. 2008, 33, 788–790CrossRefGoogle Scholar
  29. 29.
    Sun, Y.; Fan, X., Analysis of ring resonators for chemical vapor sensor development, Opt. Express 2008, 16, 10254–10268CrossRefGoogle Scholar
  30. 30.
    Chang, R. K.; Campillo, A. J., Optical Processes in Microcavities, World Scientific, Singapore, 1996 Google Scholar
  31. 31.
    Gordon, J. D.; Lowder, T. L.; Selfridge, R. H.; Schultz, S. M., Optical d-fiber-based volatile organic compound sensor, Appl. Opt. 2007, 46, 7805–7810CrossRefGoogle Scholar
  32. 32.
    Reidy, S.; Lambertus, G.; Reece, J.; Sacks, R., High-performance, static-coated silicon microfabricated columns for gas chromatography, Anal. Chem. 2006, 78, 2623–2630CrossRefGoogle Scholar
  33. 33.
    Jaczewska, J.; Raptis, I.; Budkowski, A.; Goustouridis, D.; Raczkowska, J.; Sanopoulou, M.; Pamula, E.; Bernasik, A.; Rysz, J., Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters, Synth. Met. 2007, 157, 726–732CrossRefGoogle Scholar
  34. 34.
    Chaure, S.; Yang, B.; Hassan, A. K.; Ray, A. K.; Bolognesi, A., Interaction behaviour of spun films of poly[3-(6-methoxyhexyl)thiophene] derivatives with ambient gases, J. Phys.: Appl. Phys. 2004, 37, 1558–1562CrossRefGoogle Scholar
  35. 35.
    Bohren, C. F.; Huffman, D. R., Absorption and Scattering of Light by Small Particles, Wiley, New York, NY, 1998 CrossRefGoogle Scholar
  36. 36.
    Zhu, H.; White, I. M.; Suter, J. D.; Dale, P. S.; Fan, X., Analysis of biomolecule detection with optofluidic ring resonator sensors, Opt. Express 2007, 15, 9139–9146CrossRefGoogle Scholar
  37. 37.
    Mortensen, N. A.; Xiao, S.; Pedersen, J., Liquid-infiltrated photonic crystals: Enhanced light-matter interactions for lab-on-a-chip applications, Microfluid. Nanofluid. 2008, 4, 117–127CrossRefGoogle Scholar
  38. 38.
    White, I. M.; Fan, X., On the performance quantification of resonant refractive index sensors, Opt. Express 2008, 16, 1020–1028CrossRefGoogle Scholar
  39. 39.
    Potyrailo, R. A.; Sivavec, T. M., Boosting sensitivity of organic vapor detection with silicone block polyimide polymers, Anal. Chem. 2004, 76, 7023–7027CrossRefGoogle Scholar
  40. 40.
    Liron, Z.; Kaushansky, N.; Frishman, G.; Kaplan, D.; Greenblatt, J., The polymer-coated SAW sensor as a gravimetric sensor, Anal. Chem. 1997, 69, 2848–2854CrossRefGoogle Scholar
  41. 41.
    Fan, X.; White, I. M.; Zhu, H.; Suter, J. D.; Oveys, H., Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. SPIE (Laser Resonators and Beam Control X) 2007, 6452, 64520M.1–64520M.20Google Scholar
  42. 42.
    Teraoka, I.; Arnold, S., Coupled whispering gallery modes in a multilayer-coated microsphere, Opt. Lett. 2007, 32, 1147–1149CrossRefGoogle Scholar
  43. 43.
    White, I. M.; Gohring, J.; Sun, Y.; Yang, G.; Lacey, S.; Fan, X., Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators, Appl. Phys. Lett. 2007, 91, 241104CrossRefGoogle Scholar
  44. 44.
    White, I. M.; Oveys, H.; Fan, X., Liquid core optical ring resonator sensors, Opt. Lett. 2006, 31, 1319–1321CrossRefGoogle Scholar
  45. 45.
    White, I. M.; Oveys, H.; Fan, X.; Smith, T. L.; Zhang, J., Integrated multiplexed biosensors based on liquid core optical ring resonators and anti-resonant reflecting optical waveguide, Appl. Phys. Lett. 2006, 89, 191106CrossRefGoogle Scholar
  46. 46.
    Dorman, F. L.; Overton, E. B.; Whiting, J. J.; Cochran, J. W.; Gardea-Torresdey, J., Gas chromatography, Anal. Chem. 2008, 80, 4487–4497CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Yuze Sun
    • 1
  • Siyka I. Shopova
  • Ian M. White
  • Greg Frye-Mason
  • Xudong Fan
    • 1
  1. 1.Department of Biological EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations