New Approach for Selective Vapor Sensing Using Structurally Colored Self-Assembled Films

  • Radislav A. Potyrailo
  • Zhebo Ding
  • Matthew D. Butts
  • Sarah E. Genovese
  • Tao Deng
Part of the Integrated Analytical Systems book series (ANASYS)


We demonstrate that selective sensing of multiple vapors can be accomplished using a structurally colored colloidal crystal film formed from composite core/shell nanospheres and multivariate spectral analysis of vapor response. To improve the detection of color changes of the sensing colloidal crystal film at relatively low vapor partial pressures (P/P 0 ≤ 0.1, where P is the partial pressure of vapor and P 0 is the saturation vapor pressure), we apply a differential spectroscopy measurement approach. The vapor-sensing selectivity is provided by the combination of the composite nature of the colloidal nanospheres in the film with the multivariate analysis of the spectral changes of the film reflectivity upon exposure to different vapors. The multianalyte sensing was demonstrated using a colloidal crystal film composed of 326-nm diameter core polystyrene spheres coated with a 20-nm thick silica shell. Discrimination of water, acetonitrile, toluene, and dichloromethane vapors using a single sensing colloidal crystal film was evaluated applying principal components analysis of the reflectivity spectra.


Submicron Particle Principal Component Analysis Model Chemical Warfare Agent Recovery Kinetic Photonic Stop Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been supported by GE Corporate long-term research funds. We thank Prof. Sanford Asher from the University of Pittsburgh for useful discussions.


  1. 1.
    Zolotov, Y. A.; Ivanov, V. M.; Amelin, V. G., Chemical test methods of analysis, In Wilson & Wilson's Comprehensive Analytical Chemistry; Barcelo, D., Ed.; Elsevier, Amsterdam, 2002 Google Scholar
  2. 2.
    Potyrailo, R. A.; Mirsky, V. M., Combinatorial and high-throughput development of sensing materials: The first ten years, Chem. Rev. 2008, 108, 770–813CrossRefGoogle Scholar
  3. 3.
    Charych, D. H.; Nagy, J. O.; Spevak, W.; Bednarski, M. D., Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly, Science. 1993, 261, 585–588CrossRefGoogle Scholar
  4. 4.
    Rakow, N. A.; Suslick, K. S., A colorimetric sensor array for odour visualization, Nature. 2000, 406, 710–713CrossRefGoogle Scholar
  5. 5.
    Holtz, J. H.; Asher, S. A., Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials, Nature. 1997, 389, 829–832CrossRefGoogle Scholar
  6. 6.
    Lin, V. S.-Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R., A porous silicon-based optical interferometric biosensor, Science. 1997, 278, 840–843CrossRefGoogle Scholar
  7. 7.
    Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A., Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles, Science. 1997, 277, 1078–1081CrossRefGoogle Scholar
  8. 8.
    Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications, Science. 2003, 299, 2045–2047CrossRefGoogle Scholar
  9. 9.
    Wehrspohn, R. B.; Schweizer, S. L.; Schilling, J.; Geppert, T.; Jamois, C.; Glatthaar, R.; Hahn, P.; Feisst, A.; Lambrecht, A., Application of photonic crystals for gas detection and sensing, In Photonic Crystals; Busch, K., Ed.; Wiley-VCH Verlag, Weinheim, Germany, 2004, 238–246Google Scholar
  10. 10.
    Benabid, F.; Couny, F.; Knight, J. C.; Birks, T. A.; Russell, P. S. J., Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres, Nature. 2005, 434, 488–491CrossRefGoogle Scholar
  11. 11.
    Amarie, D.; Onuta, T.-D.; Potyrailo, R.; Dragnea, B., Submicrometer cavity surface plasmon sensors, J. Phys. Chem. B. 2005, 109, 15515–15519CrossRefGoogle Scholar
  12. 12.
    Dovidenko, K.; Potyrailo, R. A.; Grande, J., Focused ion beam microscope as an analytical tool for nanoscale characterization of gradient-formulated polymeric sensor materials, In Combinatorial Methods and Informatics in Materials Science. Materials Research Society Symposium Proceedings; Fasolka, M.; Wang, Q.; Potyrailo, R. A.; Chikyow, T.; Schubert, U. S.; Korkin, A., Eds.; Materials Research Society, Warrendale, PA, 2006, 894, 231–236Google Scholar
  13. 13.
    Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G., Nanostructured plasmonic sensors, Chem. Rev. 2008, 108, 494–521CrossRefGoogle Scholar
  14. 14.
    Miyata, T.; Asami, N.; Uragami, T., A reversibly antigen-responsive hydrogel, Nature. 1999, 399, 766–769CrossRefGoogle Scholar
  15. 15.
    Potyrailo, R. A.; Ding, Z.; Butts, M. D.; Genovese, S. E.; Deng, T., Selective chemical sensing using structurally colored core-shell colloidal crystal films, IEEE Sensors J. 2008, 8, 815–822CrossRefGoogle Scholar
  16. 16.
    Convertino, A.; Capobianchi, A.; Valentini, A.; Cirillo, E. N. M., A new approach to organic solvent detection: High-reflectivity bragg reflectors based on a gold nanoparticle/teflon-like composite material, Adv. Mater. 2003, 15, 1103–1105CrossRefGoogle Scholar
  17. 17.
    Snow, P. A.; Squire, E. K.; Russell, P. S. J.; Canham, L. T., Vapor sensing using the optical properties of porous silicon bragg mirrors, J. Appl. Phys. 1999, 86, 1781–1784CrossRefGoogle Scholar
  18. 18.
    Gao, J.; Gao, T.; Sailor, M. J., Porous-silicon vapor sensor based on laser interferometry, Appl. Phys. Lett. 2000, 77, 901–903CrossRefGoogle Scholar
  19. 19.
    Potyrailo, R. A.; Ghiradella, H.; Vertiatchikh, A.; Dovidenko, K.; Cournoyer, J. R.; Olson, E., Morpho butterfly wing scales demonstrate highly selective vapour response, Nature Photonics. 2007, 1, 123–128CrossRefGoogle Scholar
  20. 20.
    Gao, T.; Gao, J.; Sailor, M. J., Tuning the response and stability of thin film mesoporous silicon vapor sensors by surface modification, Langmuir. 2002, 18, 9953–9957CrossRefGoogle Scholar
  21. 21.
    Potyrailo, R. A., Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools ?, Angew. Chem. Int. Ed. 2006, 45, 702–723CrossRefGoogle Scholar
  22. 22.
    Bailey, R. C.; Hupp, J. T., Large-scale resonance amplification of optical sensing of volatile compounds with chemoresponsive visible-region diffraction gratings, J. Am. Chem. Soc. 2002, 124, 6767–6774CrossRefGoogle Scholar
  23. 23.
    Asher, S. A., Crystalline colloidal array chemical sensing devices, In ACS PRF summer school on nanoparticle materials, June 6–18, 2004. Eastern Michigan University, Ypsilanti, MI, 2004 Google Scholar
  24. 24.
    Zhang, J.; Coombs, N.; Kumacheva, E., A new approach to hybrid nanocomposite materials with periodic structures, J. Am. Chem. Soc. 2002, 124, 14512–14513CrossRefGoogle Scholar
  25. 25.
    Fong, B.; Turksen, S.; Russo, P. S.; Stryjewski, W., Colloidal crystals of silica-homopolypeptide composite particles, Langmuir. 2004, 20, 266–269CrossRefGoogle Scholar
  26. 26.
    Suzuki, D.; Kawaguchi, H., Modification of gold nanoparticle composite nanostructures using thermosensitive core-shell particles as a template, Langmuir. 2005, 21, 8175–8179CrossRefGoogle Scholar
  27. 27.
    Osterloh, F.; Hiramatsu, H.; Porter, R.; Guo, T., Alkanethiol-induced structural rearrangements in silica-gold core-shell-type nanoparticle clusters: An opportunity for chemical sensor engineering, Langmuir. 2004, 20, 5553–5558CrossRefGoogle Scholar
  28. 28.
    Goodey, A. P.; McDevitt, J. T., Multishell microspheres with integrated chromatographic and detection layers for use in array sensors, J. Am. Chem. Soc. 2003, 125, 2870–2871CrossRefGoogle Scholar
  29. 29.
    Xu, X.; Friedman, G.; Humfeld, K.; Majetich, S.; Asher, S. A., Superparamagnetic photonic crystals, Adv. Mater. 2001, 13, 1681–1684CrossRefGoogle Scholar
  30. 30.
    Liz-Marzan, L. M.; Mulvaney, P., The assembly of coated nanocrystals, J. Phys. Chem. B. 2003, 107, 7312–7326CrossRefGoogle Scholar
  31. 31.
    Nayak, S.; Lyon, L. A., Ligand-functionalized core/shell microgels with permselective shells, Angew. Chem. Int. Ed. 2004, 43, 6706–6709CrossRefGoogle Scholar
  32. 32.
    Zhang, R.; Graf, K.; Berger, R., Swelling of cross-linked polystyrene spheres in toluene vapor, Appl. Phys. Lett. 2006, 89, 223114CrossRefGoogle Scholar
  33. 33.
    Arsenault, A. C.; Kitaev, V.; Manners, I.; Ozin, G. A.; Mihi, A.; Míguez, H., Vapor swellable colloidal photonic crystals with pressure tunability, J. Mater. Chem. 2005, 15, 133–138CrossRefGoogle Scholar
  34. 34.
    Fleischhaker, F.; Arsenault, A. C.; Tétreault, N.; Wang, Z.; Kitaev, V.; Peiris, F.; Mihi, A.; Miguez, H.; von Freymann, G.; Manners, I.; Zentel, R.; Ozin, G. A., “Smart” defects in colloidal photonic crystals, In Materials Research Society Symposium Proceedings, Materials Research Society, Warrendale, PA, 2006, Vol. 901E; paper # 0901-Ra22-27-Rb22-27Google Scholar
  35. 35.
    Yamada, Y.; Nakamura, T.; Ishi, M.; Yano, K., Reversible control of light reflection of a colloidal crystal film fabricated from monodisperse mesoporous silica spheres, Langmuir. 2006, 22, 2444–2446CrossRefGoogle Scholar
  36. 36.
    Ingle, J. D., Jr.; Crouch, S. R. Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, NJ, 1988 Google Scholar
  37. 37.
    Butts, M. D.; Genovese, S. E.; Glaser, P. B.; Williams, D. S., Hollow silica particles and methods for making same, US Patent Application 20070036705: 2007 Google Scholar
  38. 38.
    Goodwin, J. W.; Ottewill, R. H.; Pelton, R., Studies on the preparation and characterization of monodisperse polystyrene lattices V: The preparation of cationic latices, Colloid Polymer Sci. 1979, 257, 61–69CrossRefGoogle Scholar
  39. 39.
    Ali, S. A.; Sengupta, M. J., Preparation and characterization of monodisperse polystyrene latexes of varying particle sizes without the use of surfactants, Polym. Mater. Sci. Eng. 1991, 8, 243–250Google Scholar
  40. 40.
    Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L., Single-crystal colloidal multilayers of controlled thickness, Chem. Mater. 1999, 11, 2132–2140CrossRefGoogle Scholar
  41. 41.
    Denkov, N.; Velev, O.; Kralchevski, P.; Ivanov, I.; Yoshimura, H.; Nagayama, K., Two-dimensional crystallization, Nature. 1993, 361, 26–26CrossRefGoogle Scholar
  42. 42.
    Ye, Y.-H.; Mayer, T. S.; Khoo, I.-C.; Divliansky, I. B.; Abrams, N.; Mallouk, T. E., Self-assembly of three-dimensional photonic-crystals with air-core line defects, J. Mater. Chem. 2002, 12, 3637–3639CrossRefGoogle Scholar
  43. 43.
    Xu, X.; Asher, S. A., Synthesis and utilization of monodisperse hollow polymeric particles in photonic crystals, J. Am. Chem. Soc. 2004, 126, 7940–7945CrossRefGoogle Scholar
  44. 44.
    Asher, S. A.; Weissman, J. M.; Tikhonov, A.; Coalson, R. D.; Kesavamoorthy, R., Diffraction in crystalline colloidal-array photonic crystals, Phys. Rev. E. 2004, 69, 066619CrossRefGoogle Scholar
  45. 45.
    Egen, M.; Voss, R.; Griesebock, B.; Zentel, R.; Romanov, S.; Torres, C. S., Heterostructures of polymer photonic crystal films, Chem. Mater. 2003, 15, 3786–3792CrossRefGoogle Scholar
  46. 46.
    Reichardt, C., Solvatochromic dyes as solvent polarity indicators, Chem. Rev. 1994, 94, 2319–2358CrossRefGoogle Scholar
  47. 47.
    Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 74th edn.; CRC Press, Boca Raton, FL, 1993 Google Scholar
  48. 48.
    Sittig, M., Handbook of Toxic and Hazardous Chemicals and Carcinogens, Noyes Publications, Park Ridge, NJ, 1991 Google Scholar
  49. 49.
    Choi, N.-J.; Lee, Y.-S.; Kwak, J.-H.; Park, J.-S.; Park, K.-B.; Shin, K.-S.; Park, H.-D.; Kim, J.-C.; Huh, J.-S.; Lee, D.-D., Chemical warfare agent sensor using mems structure and thick film fabrication method, Sens. Actuators B. 2005, 108, 177–183CrossRefGoogle Scholar
  50. 50.
    Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T., Detection of chemical warfare agents using nanostructured metal oxide sensors, Sens. Actuators B. 2005, 108, 41–55CrossRefGoogle Scholar
  51. 51.
    Bevelacqua, A.; Stilp, R., Terrorism handbook for operational responders, Delmar Publishers, Albany, NY, 1998 Google Scholar
  52. 52.
    Wise, B. M.; Gallagher, N. B., PLS_Toolbox version 2.1 for use with MATLAB, Eigenvector Research, Inc., Manson, WA, 2000 Google Scholar
  53. 53.
    Spaeth, K.; Gauglitz, G., Characterisation of the optical properties of thin polymer films for their application in detection of volatile organic compounds, Mat. Sci. Eng. C. 1998, 5, 187–191CrossRefGoogle Scholar
  54. 54.
    Lewis, N. S., Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors, Acc. Chem. Res. 2004, 37, 663–672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Radislav A. Potyrailo
    • 1
  • Zhebo Ding
    • 1
  • Matthew D. Butts
    • 1
  • Sarah E. Genovese
    • 1
  • Tao Deng
    • 1
  1. 1.Chemistry Technologies and Material CharacterizationGeneral Electric Company, Global Research CenterNiskayunaUSA

Personalised recommendations