Modal Transition in Nano-Coated Long Period Fiber Gratings: Principle and Applications to Chemical Sensing

  • Andrea Cusano
  • Pierluigi Pilla
  • Michele Giordano
  • Antonello Cutolo
Part of the Integrated Analytical Systems book series (ANASYS)


In this chapter, the numerical and experimental investigation of the phenomenon of the modal transition in long period fiber gratings (LPGs) coated with a polymeric overlay of nanometric thickness and of high refractive index (HRI) is reported. This layered structure shows a significant modification of the cladding mode distribution with respect to the bare device, which depends on the overlay features (refractive index and thickness) and on the surrounding medium refractive index (SRI). As a consequence, enhanced evanescent wave interaction with the surrounding environment and a powerful guided wave interaction with the overlay itself are obtained. These effects were exploited to build very sensitive refractometers and chemical sensors. Moreover it was shown that the high SRI sensitivity region of the coated LPG can be tuned over the desired SRI range for specific applications by acting on the overlay thickness. The dip-coating technique was adopted to build the thin film coated devices and the syndiotactic polystyrene in its nanoporous form (? form) was used as HRI material, and in particular as molecular sieve for the detection of trace amounts of chloroform in water. The recent applications to chemical sensing of the nano-coated LPGs are reviewed.


Coupling Coefficient High Refractive Index Wavelength Shift Effective Refractive Index Resonance Wavelength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Vengsarkar, A. M.; Lemaire, P. J.; Judkins, J. B.; Bhatia, V.; Erdogan, T.; Sipe, J. E., Long-period fiber gratings as Band Rejection Filters, J. Lightwave Technol. 1996, 14, 58–65CrossRefGoogle Scholar
  2. 2.
    Erdogan, T., Fiber grating spectra, J. Lightwave Technol. 1997, 15, 1277–1294CrossRefGoogle Scholar
  3. 3.
    Chiang, K. S.; Liu, Q., Long-period gratings for application in optical communications, In Proceedings of the 5th International Conference on Optical Communications and Networks and 2nd International Symposium on Advances and Trends in Fiber Optics and Applications (ICOCN/ATFO 2006), Chengdu, China, Sept 2006, 128–133Google Scholar
  4. 4.
    James, S. W.; Tatam, R. P., Optical fibre long-period grating sensors: characteristics and application, Meas. Sci. Technol. 2003, 14, R49–R61CrossRefGoogle Scholar
  5. 5.
    Bhatia, V., Applications of long-period gratings to single and multi-parameter sensing, Opt. Express 1999, 4, 457–466CrossRefGoogle Scholar
  6. 6.
    Shu, X.; Zhang, L.; Bennion, I., Sensitivity characteristics of long-period fiber gratings, J. Lightwave Technol. 2002, 20, 255CrossRefGoogle Scholar
  7. 7.
    Allsop, T.; Webb, D. J.; Bennion, I., A comparison of the sensing characteristics of long period gratings written in three different types of fiber, Opt. Fiber Technol. 2003, 9, 210–223CrossRefGoogle Scholar
  8. 8.
    Patrick, H. J.; Kersey, A. D.; Bucholtz, F., Analysis of the response of long period fiber gratings to external index of refraction, J. Lightwave Technol. 1998, 16, 1606–1612CrossRefGoogle Scholar
  9. 9.
    Duhem, O.; Henninot, J.-F.; Warenghem, M.; Douay, M., Demonstration of long-period grating efficient couplings with an external medium of a refractive index higher than that of silica, Appl. Opt. 1998, 37, 7223–7228CrossRefGoogle Scholar
  10. 10.
    Stegall, D. B.; Erdogan, T., Leaky cladding mode propagation in long-period fiber grating devices, IEEE Photon. Technol. Lett. 1999, 11, 343–345CrossRefGoogle Scholar
  11. 11.
    Hou, R.; Ghassemlooy, Z.; Hassan, A.; Lu, C.; Dowker, K. P., Modelling of long-period fibre grating response to refractive index higher than that of cladding, Meas. Sci. Technol. 2001, 12, 1709–1713CrossRefGoogle Scholar
  12. 12.
    Koyamada, Y., Numerical analysis of core-mode to radiation-mode coupling in long-period fiber gratings, IEEE Photon. Technol. Lett. 2001, 13, 308–310CrossRefGoogle Scholar
  13. 13.
    Chiang, K. S.; Liu, Y.; Ng, M. N.; Dong, X., Analysis of etched long-period fiber grating and its response to external refractive index, Electron. Lett. 2000, 36, 966–967CrossRefGoogle Scholar
  14. 14.
    Vasiliev, S. A.; Dianov, E. M.; Varelas, D.; Limberger, H. G.; Salathe, R. P., Postfabrication resonance peak positioning of long-period cladding-mode-coupled gratings, Opt. Lett. 1996, 21, 1830–1832CrossRefGoogle Scholar
  15. 15.
    Kim, S.; Jeong, Y.; Kim, S.; Kwon, J.; Park, N.; Lee, B., Control of the characteristics of a long-period grating by cladding etching, Appl. Opt. 2000, 39, 2038–2042CrossRefGoogle Scholar
  16. 16.
    Zhou, K.; Liu, H.; Hu, X., Tuning the resonant wavelength of long period fiber gratings by etching the fiber's cladding, Opt. Commun. 2001, 197, 295–297CrossRefGoogle Scholar
  17. 17.
    Patrick, H. J.; Kersey, A. D.; Bucholtz, F.; Ewing, K. J.; Judkins, J. B.; Vengsarkar, A. M., Chemical sensor based on long-period fibre grating response to index of refraction, Proc. Conf. Lasers Electro Opt. (CLEO '97) 1997, 11, 420–421Google Scholar
  18. 18.
    Falciai, R.; Mignani, A. G.; Vannini, A., Long period gratings as solution concentration sensors, Sens. Actuators B 2001, 74, 74–77CrossRefGoogle Scholar
  19. 19.
    Allsop, T.; Zhang, L.; Bennion, I., Detection of organic aromatic compounds in paraffin by a long-period grating optical sensor with optimized sensitivity, Opt. Comm. 2001, 191, 181–190CrossRefGoogle Scholar
  20. 20.
    Falate, R.; Kamikawachi, R. C.; Müller, M.; Kalinowski, H. J.; Fabris, J. L., Fiber optic sensors for hydrocarbon detection, Sens. Actuators B 2005, 105, 430–436CrossRefGoogle Scholar
  21. 21.
    Grate, J. W.; Abraham, M. H., Solubility interaction and design of chemically selective sorbent coatings for chemical sensor and arrays, Sens. Actuators B 1991, 3, 85–111CrossRefGoogle Scholar
  22. 22.
    DeLisa, M. P.; Zhang, Z.; Shiloach, M.; Pilevar, S.; Davis, C. C.; Sirkis, J. S.; Bentley, W. E., Evanescent wave long-period fiber bragg grating as an immobilized antibody biosensor, Anal. Chem. 2000, 72, 2895–2900CrossRefGoogle Scholar
  23. 23.
    Rees, N. D.; James, S. W.; Tatam, R. P.; Ashwell, G. J., Optical fiber long-period gratings with Langmuir-Blodgett thin-film overlays, Opt. Lett. 2002, 27, 686–688CrossRefGoogle Scholar
  24. 24.
    Gloge, D., Weakly guiding fibers, Appl. Opt. 1971, 10, 2252–2258CrossRefGoogle Scholar
  25. 25.
    Erdogan, T., Cladding mode resonances in short and long period fibre grating filters, J. Opt. Soc. Am. A 1997, 14, 1760–1773CrossRefGoogle Scholar
  26. 26.
    Anemogiannis, E.; Glytsis, E. N.; Gaylord, T. K., Transmission characteristics of long- period fiber gratings having arbitrary azimutal/radial refractive index variation, J. Lightwave Technol. 2003, 21, 218–227CrossRefGoogle Scholar
  27. 27.
    Rego, G.; Ivanov, O. V.; Marques, P. V. S., Demonstration of coupling to symmetric and antisymmetric cladding modes in arc-induced long-period fiber gratings, Opt. Express 2006, 14, 9594–9599CrossRefGoogle Scholar
  28. 28.
    Monerie, M., Propagation in doubly clad single-mode fibers, IEEE J. Quantum Electron. 1982, 18, 535–542CrossRefGoogle Scholar
  29. 29.
    Del Villar, I.; Matías, I.; Arregui, F.; Lalanne, P. Optimization of sensitivity in long period fiber gratings with overlay deposition, Opt. Express 2005, 13, 56–69CrossRefGoogle Scholar
  30. 30.
    Hochreiner, H.; Cada, M.; Wentzell, P. D., Tuning the Response of Long-Period Fiber Gratings for Chemical Sensing Applications, in Next-Generation Spectroscopic Technologies, Brown, C. D.; Druy, M. A.; Coates, J. P., Eds.; Proc. SPIE 2007, 6765, 676504Google Scholar
  31. 31.
    Cusano, A.; Pilla, P.; Contessa, L.; Iadicicco, A.; Campopiano, S.; Cutolo, A.; Giordano, M.; Guerra, G., High sensitivity optical chemo-sensor based on coated long period gratings for sub ppm chemical detection in water, Appl. Phys. Lett. 2005, 87, 234105Google Scholar
  32. 32.
    Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M., Cladding modes re-organization in high refractive index coated Long Period Gratings: effects on the refractive index sensitivity, Opt. Lett. 2005, 30, 2536–2538CrossRefGoogle Scholar
  33. 33.
    Del Villar, I.; Matias, I. R.; Arregui, F. J., Long-period fiber gratings with overlay of variable refractive index, IEEE Photon. Technol. Lett. 2005, 17, 1893–1895CrossRefGoogle Scholar
  34. 34.
    Cusano, A.; Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; A. Cutolo, M. Giordano, Mode transition in high refractive index coated long period gratings, Opt. Express 2006, 14, 19–34CrossRefGoogle Scholar
  35. 35.
    Cusano, A., Iadicicco, A.; Pilla, P.; Contessa, L.; Campopiano, S.; Cutolo, A.; Giordano, M.; Coated long period fiber gratings as high sensitivity opto-chemical sensors, J. Lightwave Technol. 2006, 24, 1776–1786CrossRefGoogle Scholar
  36. 36.
    Del Villar, I.; Matias, I. R.; Arregui, F. J.; Achaerandio, M., Nanodeposition of materials with complex refractive index in long-period fiber gratings, J. Lightwave Technol. 2005, 23, 4192CrossRefGoogle Scholar
  37. 37.
    Del Villar, I.; Matias, I. R.; Arregui, F. J. Influence on cladding mode distribution of overlay deposition on long-period fiber gratings, J. Opt. Soc. Am. A 2006, 23, 651–658CrossRefGoogle Scholar
  38. 38.
    Hochreiner, H.; Wentzell, P. D., Modelling new applications of long-period fibre gratings: Absorbance measurements, Proceedings Europtrode IX, 30 March–2 April 2008, Dublin, IrelandGoogle Scholar
  39. 39.
    Yang, J.; Yang, L.; Xu, C.; Huang, W.; Li, Y., Long-period grating refractive index sensor with a modified cladding structure for large operational range and high sensitivity, Appl. Opt. 2006, 45, 6142–6147CrossRefGoogle Scholar
  40. 40.
    Yang, J.; Yang, L.; Xu, C.; Li, Y., Optimization of cladding-structure-modified long-period-grating refractive-index sensors, J. Lightwave Technol. 2007, 25, 372–380CrossRefGoogle Scholar
  41. 41.
    Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Corradini, P., Polymorphism in melt crystallized syndiotactic polystyrene samples, Macromolecules 1990, 23, 1539–1544CrossRefGoogle Scholar
  42. 42.
    Petraccone, V.; Auriemma, F.; Dal Poggetto, F.; De Rosa, C.; Guerra, G.; Corradini, P., On the structure of the mesomorphic form of syndiotactic polystyrene, Makromolekulare Chemie 1993, 194, 1335–1345CrossRefGoogle Scholar
  43. 43.
    De Rosa, C.; Guerra, G.; Petraccone, V.; Pirozzi, B., Crystal structure of emptied clathrate form (?e form) of syndiotactic polystyrene, Macromolecules 1997, 30, 4147–4152CrossRefGoogle Scholar
  44. 44.
    Milano, G.; Venditto, V.; Guerra, G.; Cavallo, L.; Ciambelli, P.; Sannino, D., Shape and volume of cavities in thermoplastic molecular sieves based on syndiotactic polystyrene, Chem. Mater. 2001, 13, 506–1511CrossRefGoogle Scholar
  45. 45.
    Guerra, G.; Manfredi, C.; Musto, P.; Tavone, S., Guest conformation and diffusion into amorphous and emptied clathrate phases of syndiotactic polystyrene, Macromolecules 1998, 31, 1329–1334CrossRefGoogle Scholar
  46. 46.
    Mensitieri, G.; Venditto, V.; Guerra, G., Polymeric sensing films absorbing organic guests into a nanoporous host crystalline phase, Sens. Actuators B 2003, 92, 255–261CrossRefGoogle Scholar
  47. 47.
    Guerra, G.; Mensitieri, G.; Venditto, V., Method for the detection of organic pollutants using syndiotactic polystyrene polymers as sensing elements, US Patent 20020073764: 2002 Google Scholar
  48. 48.
    Giordano, M.; Russo, M.; Cusano, A.; Cutolo, A.; Mensitieri, G.; Nicolais, L., Optical sensor based on ultrathin films of ?-form syndiotactic polystyrene for fast and high resolution detection of chloroform, Appl. Phys. Lett. 2004, 85, 5349CrossRefGoogle Scholar
  49. 49.
    Giordano, M.; Russo, M.; Cusano, A.; Mensitieri, G.; Guerra, G., Syndiotactic polystyrene thin film as sensitive layer for an optoelectronic chemical sensing device, Sens. Actuators B 2005, 109, 177–184CrossRefGoogle Scholar
  50. 50.
    Giordano, M.; Russo, M.; Cusano, A.; Mensitieri, G., An high sensitivity optical sensor for chloroform vapours detection based on nanometric film of ?-form syndiotactic polystyrene, Sens. Actuators B 2005, 107, 140–147CrossRefGoogle Scholar
  51. 51.
    Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford, 1975Google Scholar
  52. 52.
    Scriven, L. E., Physics and applications of dip coating and spin coating, Mater. Res. Soc. Symp. Proc. 1988, 121, 717–729CrossRefGoogle Scholar
  53. 53.
    James, S. W.; Tatam, R. P., Fibre optic sensors with nano-structured coatings, J. Opt. A 2006, 8, S430–S444CrossRefGoogle Scholar
  54. 54.
    Ishaq, I. M.; Quintela, A. S.; James, W.; Ashwell, G. J.; Lopez-Higuera, J. M.; Tatam, R. P., Modification of the refractive index response of long period gratings using thin film overlays, Sens. Actuators B 2005, 107, 738–741CrossRefGoogle Scholar
  55. 55.
    Del Villar, I.; Achaerandio, M.; Matías, I. R.; Arregui, F. J., Deposition of overlays by electrostatic self-assembly in long-period fiber gratings, Opt. Lett. 2005, 30, 720–722CrossRefGoogle Scholar
  56. 56.
    Del Villar, I.; Corres, J. M.; Achaerandio, M.; Arregui, F. J.; Matias, I. R., Spectral evolution with incremental nanocoating of long period fiber gratings, Opt. Express 2006, 14, 11972–11981CrossRefGoogle Scholar
  57. 57.
    Cusano, A.; Iadicicco, A.; Pilla, P.; Cutolo, A.; Giordano, M.; Campopiano, S., Sensitivity characteristics in nanosized coated long period gratings, Appl. Phys. Lett. 2006, 89, 201116CrossRefGoogle Scholar
  58. 58.
    Tan, K. M.; Tay, C. M.; Tjin, S. C.; Chan, C. C.; Rahardjo H., High relative humidity measurements using gelatin coated long-period grating sensors, Sens. Actuators B 2005, 110, 335–341CrossRefGoogle Scholar
  59. 59.
    Liu, Y.; Wang, L.; Zhang, M.; Tu, D.; Mao, X.; Liao, Y., Long-period grating relative humidity sensor with hydrogel coating, IEEE Photon. Technol. Lett. 2007, 19, 880–882CrossRefGoogle Scholar
  60. 60.
    Konstantaki, M.; Pissadakis, S.; Pispas, S.; Madamopoulos, N.; Vainos, N. A., Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating, Appl. Opt. 2006, 45, 4567–4571CrossRefGoogle Scholar
  61. 61.
    Tang, J. L.; Cheng, S. F.; Hsu, W. T.; Chiang, T.Y.; Chau, L. K., Fiber optic biochemical sensing with a colloidal gold-modified long period fiber grating, Sens. Actuators B 2006, 119, 105–109CrossRefGoogle Scholar
  62. 62.
    Zhang, J.; Tang, X.; Dong, J.; Wei, T.; Xiao, H., Zeolite thin film-coated long period fiber grating sensor for measuring trace chemical, Opt. Express 2008, 16, 8317–8323CrossRefGoogle Scholar
  63. 63.
    Keith, J.; Hess, L. C.; Spendel, W. U.; Cox, J. A.; Pacey, G. E., The investigation of the behavior of a long period grating sensor with a copper sensitive coating fabricated by layer-by-layer electrostatic adsorption, Talanta 2006, 70, 818–822CrossRefGoogle Scholar
  64. 64.
    Corres, J. M.; del Villar, I.; Matias, I. R.; Arregui, F. J., Fiber-optic pH-sensors in long-period fiber gratings using electrostatic self-assembly, Opt. Lett. 2007, 32, 29–31CrossRefGoogle Scholar
  65. 65.
    Lee, J.; Chen, Q.; Zhang, Q.; Reichard, K.; Ditto, D.; Mazurowski, J.; Hackert, M.; Yin, S., Enhancing the tuning range of a single resonant band long period grating while maintaining the resonant peak depth by using an optimized high index indium tin oxide overlay, Appl. Opt. 2007, 46, 6984–6989CrossRefGoogle Scholar
  66. 66.
    Pilla, P.; Giordano, M.; Korwin-Pawlowski, M. L.; Bock, W. J.; Cusano, A., Sensitivity characteristics tuning in tapered long period gratings by nanocoatings, IEEE Photon. Technol. Lett. 2007, 19, 1517–1519CrossRefGoogle Scholar
  67. 67.
    Del Villar, I.; Arregui, F. J.; Matias, I. R.; Cusano, A.; Paladino, D.; Cutolo, A., Fringe generation with non-uniformly coated long-period fiber gratings, Opt. Express 2007, 15, 9326–9340CrossRefGoogle Scholar
  68. 68.
    Pilla, P.; Foglia Manzillo, P.; Giordano, M.; Korwin-Pawlowski, M. L.; Bock, W. J.; Cusano, A., Spectral behavior of thin film coated cascaded tapered long period gratings in multiple configurations, Opt. Express 2008, 16, 9765–9780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Andrea Cusano
    • 1
  • Pierluigi Pilla
    • 1
  • Michele Giordano
  • Antonello Cutolo
    • 1
  1. 1.University of Sannio, Engineering Department ? Optoelectronic DivisionUniversity of SannioBeneventoItaly

Personalised recommendations