Microresonator Sensors Made in Polymers with Functional Chromophore Dopants

  • Antao Chen
Part of the Integrated Analytical Systems book series (ANASYS)


The optical properties such as index of refraction and optical absorption of many chromophore-doped polymers are sensitive to the physical and chemical environment to which the polymers are exposed. A variety of microring resonator sensors have been realized with chromophore-doped polymers. Detection sensitivity is further enhanced by optical microresonator structures such as waveguide microring resonator and fiber Bragg gratings. Chromophore-doped polymers also offer some desirable flexibility in device fabrication. Ultraviolet light and electron beam can reduce the index of refraction of the polymer. The photobleaching and electron beam bleaching methods form optical waveguides in a single fabrication step and do not involve solvents or wet chemicals, and can be applied to polymers that are not compatible with other waveguide fabrication techniques.

This chapter provides an overview of the basic principles and designs of such sensors. A chemical sensor to detect trace explosives and a broadband fiber optic electric-field sensor are presented as practical examples. The polymers used for the trace explosive sensor are unpoled and have chromophores randomly orientated in the polymer hosts. The electric field sensor uses a poled polymer with chromophores preferentially aligned through electrical poling, and the microring resonator is directly coupled to the core of optical fiber.


Fiber Bragg Grating Optical Waveguide Polymer Thin Film Beam Propagation Method Microring Resonator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks Profs. Larry R. Dalton and Alex K.-Y. Jen, and Lumera Corporation for providing polymer materials. The work present in this chapter is supported by National Science Foundation Grant Number ECS-0437920, National Science Foundation Center on Materials and Devices for Information Technology Research (STC-CMDITR), Grant Number DMR-0120967, and Office of Naval Research Grant N00014–05–1–0843.


  1. 1.
    Rabiei, P.; Steier, W. H.; Zhang, Z.; Dalton, L. R., Polymer micro-ring filters and modulators, J. Lightw. Technol. 2002, 20, 1968–1975CrossRefGoogle Scholar
  2. 2.
    Dalton, L. R.; Robinson, B. H.; Jen, A. K.-Y.; Steier, W. H.; Nielsen, R., Systematic development of high bandwidth, low drive voltage organic electro-optic devices and their applications, Opt. Mater. 2003, 21, 19–28CrossRefGoogle Scholar
  3. 3.
    Enami, Y.; Peyghambarian, N.; Kawazu, M.; Jen, A. K. -Y., Hybrid electro-optic polymer and selectively buried sol-gel waveguides, Appl. Phys. Lett. 2003, 82, 490–492CrossRefGoogle Scholar
  4. 4.
    Sinyukov, A. M.; Hayden, L. M., Generation and detection of terahertz radiation with multilayered electro-optic polymer films, Opt. Lett. 2002, 27, 55–57CrossRefGoogle Scholar
  5. 5.
    Pyayt, A.; Zhang, X.; Luo, J.; Jen, A.; Dalton, L.; Chen, A., Optical micro-resonator chemical sensor, Proc. SPIE 2007, 6556, 65561D-1–65561D-6Google Scholar
  6. 6.
    Little, B. E.; Chu, S. T.; Absil, P. P.; Hryniewicz, J. V.; Seiferth, F. G. F.; Gill, D.; Van, V.; King, O.; Trakalo, M., Very high-order microring resonator filters the WDM applications, IEEE Photonics Technol. Lett. 2004, 16, 2263–2265CrossRefGoogle Scholar
  7. 7.
    Xia, F.; Sekaric, L.; Vlasov, Y., Ultracompact optical buffers on a silicon chip, Nat. Photonics 2007, 1, 65–71CrossRefGoogle Scholar
  8. 8.
    Xu, Q.; Schmidt, B.; Pradhan, S.; Lipson, M., Micrometre-scale silicon electro-optic modulator, Nature 2005, 435, 325–327CrossRefGoogle Scholar
  9. 9.
    Dekker, R.; Klunder, D. J. W.; Borreman, A.; Diemeer, M. B. J.; Worhoff, K.; Driessen, A.; Stouwdam, J. W.; Van Veggel, F. C. J. M., Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides, Appl. Phys. Lett. 2004, 85, 6104–6106CrossRefGoogle Scholar
  10. 10.
    Kuwata-Gonokami, M.; Jordan, R. H.; Dodabalapur, A.; Katz, H. E.; Schilling, M. L.; Slusher, R. E.; Ozawa, S., Polymer microdisk and microring lasers, Opt. Lett. 1995, 20, 2093–2095CrossRefGoogle Scholar
  11. 11.
    Chao, C. -Y.; Fung, W.; Guo, L. J., Polymer microring resonators for biochemical sensing applications, IEEE J. Sel. Topics Quant. Electron. 2006, 12, 134–146CrossRefGoogle Scholar
  12. 12.
    Steier, W. H.; Kalluri, S.; Chen, A.; Garner, S.; Chuyanov, V.; Ziari, M.; Shi, Y.; Fetterman, H.; Jalali, B.; Wang, W.; Chen, D.; Dalton, L. R., Applications of electro-optic polymers in photonics, Mater. Res. Soc. Symp. Proc. 1996, 413, 147–157CrossRefGoogle Scholar
  13. 13.
    Herminghaus, S.; Smith, B. A.; Swalen, J. D., Electro-optic coefficients in electric-field-poled polymer waveguides, J. Opt. Soc. Am. B 1991, 8, 2311–2317CrossRefGoogle Scholar
  14. 14.
    Sun, H.; Pyajt, A.; Luo, J.; Shi, Z.; Hau, S.; Jen, A. K. -Y.; Dalton, L.; Chen, A., All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber, IEEE Sens. J. 2007, 7, 515–524CrossRefGoogle Scholar
  15. 15.
    Chen, A.; Sun, H.; Pyayt, A.; Dalton, L. R.; Luo, J.; Jen, A. K.-Y., Microring resonators made in poled and unpoled chromophore-containing polymers for optical communication and sensors, IEEE J. Sel. Topics Quantum Electron. 2008, 14, 1281–1288CrossRefGoogle Scholar
  16. 16.
    Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review, Sens. Actuators B 1999, 54, 3–15CrossRefGoogle Scholar
  17. 17.
    Trouillet, A.; Ronot-Trioli, C.; Veillas, C.; Gagnaire, H., Chemical sensing by surface plasmon resonance in a multimode optical fibre, Pure Appl. Opt. 1996, 5, 227–237CrossRefGoogle Scholar
  18. 18.
    Ronot-Trioli, C.; Trouillet, A.; Veillas, C.; Gagnaire, H., Monochromatic excitation of surface plasmon resonance in an optical-fibre refractive-index sensor, Sens. Actuators A 1996, 54, 589–593CrossRefGoogle Scholar
  19. 19.
    Yariv, A., Universal relations for coupling of optical power between microresonators and dielectric waveguides, Electron. Lett. 2000, 36, 321–322CrossRefGoogle Scholar
  20. 20.
    Norwood, R. A.; Eldada, L.; Emo, S.; Gustus, J.; Rapoport, R.; Stengel, K. M. T.; Shacklette, L. W.; Wu, C.; Xu, C.; Yardley, J. T., Polymer optical interconnection technology: toward WDM applications, Proc. SPIE 1996, 2690, 151–162CrossRefGoogle Scholar
  21. 21.
    Eldada, L.; Xu, C.; Stengel, K. M. T.; Shacklette, L. W.; Yardley, J. T., Laser-fabricated low-loss single-mode raised-rib waveguiding devices in polymers, J. Lightwave Technol. 1996, 14, 1704–1713CrossRefGoogle Scholar
  22. 22.
    Eldada L.; Shacklette, L. W., Advances in polymer integrated optics, IEEE J. Sel. Topics Quant. Electron. 2000, 6, 54–68CrossRefGoogle Scholar
  23. 23.
    Wang, W. C.; Lin, W.; Marshall, H.; Skolnick, R.; Schaafsma, D., All-dielectric miniature wideband rf receive antenna, Opt. Eng. 2004, 43, 673–677CrossRefGoogle Scholar
  24. 24.
    Sun, H.; Dalton, L.; Chen, A., Systematic design and simulation of polymer microring resonators with the combination of beam propagation method and matrix model, In Digest of the IEEE LEOS Summer Topical Meetings, 2007, 217–218Google Scholar
  25. 25.
    Paloczi, G. T.; Huang, Y.; Yariv, A.; Mookherjea, S., Polymeric Mach-Zehnder interferometer using serially coupled microring resonators, Opt. Express 2003, 11, 2666–2671CrossRefGoogle Scholar
  26. 26.
    Ma, J.; Lin, S.; Feng, W.; Feuerstein, R. J.; Hooker, B.; Mickelson, A. R., Modeling photobleached optical polymer waveguides, Appl. Opt. 1995, 34, 5352–5360CrossRefGoogle Scholar
  27. 27.
    Chen, A.; Chuyanov, V.; Marti-Carrera, F. I.; Garner, S.; Steier, W. H.; Mao, S. S. H.; Ra, Y.; Dalton, L. R.; Shi, Y., Trimming of polymer waveguide Y-junction by rapid photobleaching for tuning the power splitting ratio, Photonics Technol. Lett. 1997, 9, 1499–1501CrossRefGoogle Scholar
  28. 28.
    Zhou, J.; Pyayt, A.; Dalton, L. R.; Luo, J.; Jen, A. K. Y.; Chen A., Photobleaching fabrication of microring resonator in a chromophore-containing polymer, IEEE Photonics Technol. Lett. 2006, 18, 2221–2223CrossRefGoogle Scholar
  29. 29.
    Liao, Y.; Anderson, C. Y.; Sullivan, P. A.; Akelaitis, A. J. P.; Robinson, B. H.; Dalton, L. R., Electro-optical properties of polymers containing alternating nonlinear optical chromophores and bulky spacers, Chem. Mater. 2006, 18, 1062–1067CrossRefGoogle Scholar
  30. 30.
    Jin, D.; Londergan, T.; Huang, D.; Wolf, N.; Condon, S.; Tolstedt, D.; Guan, H. W.; Cong, S.; Johnson, E.; Dinu, R., Achieving large electro-optic response: DH-type chromophores in both crosslinked systems and linear high-Tg systems, Proc. SPIE 2004, 5351, 44–56CrossRefGoogle Scholar
  31. 31.
    Luo, J.; Liu, S.; Haller, M.; Kang, J. -W.; Kim, T. -D.; Jang, S. -H.; Chen, B.; Tucker, N.; Li, H.; Tang, H. -Z.; Dalton, L. R.; Liao,Y.; Robinson, B. H.; Jen A. K. Y., Recent progress in developing highly efficient and thermally stable nonlinear optical polymers for electro-optics, Proc. SPIE 2004, 5351, 36–43CrossRefGoogle Scholar
  32. 32.
    Samoc, A.; Samoc, M.; Luther-Davies, B.; Kolev, V. Z.; Bagien, R. K.; Luo, X.; Zha, C., In situ second harmonic generation in disperse red 1 doped polymer and sol-gel films, Molecular Cryst. Liq. Cryst. 2006, 446, 123–140CrossRefGoogle Scholar
  33. 33.
    Chen, A.; Sun, H.; Pyayt, A.; Zhang, X.; Luo, J.; Jen, A.; Sullivan, P. A.; Elangovan, S.; Dalton, L. R.; Dinu, R.; Jin, D.; Huang, D., Chromophore-containing polymers for trace explosive sensors, J. Phys. Chem. C 2008, 112, 8072–8078CrossRefGoogle Scholar
  34. 34.
    Jose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulovic, V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature 2005, 434, 876–879CrossRefGoogle Scholar
  35. 35.
    Bauer, W. S.; Yilmaz, S.; Wirges, W.; Gerhard-Multhaupt, R., Optimized poling of nonlinear optical polymers based on dipole-orientation and dipole-relaxation studies, J. Appl. Phys. 1994, 75, 7211–7219CrossRefGoogle Scholar
  36. 36.
    Hill, R. A.; Knoesen, A.; Mortazavi, M. A., Corona poling of nonlinear polymer thin films for electro-optic modulators, Appl. Phys. Lett. 1994, 65, 1733–1735CrossRefGoogle Scholar
  37. 37.
    Vorst, C. P. J. M. V. D.; Picken, S. J., Electric field poling of acceptor-donor molecules, J. Opt. Soc. Am B 1990, 7, 320–325.CrossRefGoogle Scholar
  38. 38.
    Dalton, L. R.; Robinson, B. H.; Jen, A.-K. Y.; Reid, P.; Eichinger, B.; Sullivan, P.; Akelaitis, A.; Bale, D.; Haller, M.; Luo, J.; Liu, S.; Liao, Y.; Firestone, K.; Bhatambrekar, N.; Bhattacharjee, S.; Sinncss, J.; Hammond, S.; Buker, N.; Snoeberger, R.; Lingwood, M.; Rommel, H.; Amend, J.; Jang, S. H.; Chen, A.; Steier, W., Electro-optic coefficient of 500 pm/V and beyond for organic materials, Proc. SPIE 2005, 5935, 1–12Google Scholar
  39. 39.
    Robertson, W. M. Optoelectronic Techniques for Microwave and Millimeter-Wave Engineering, Artech House, Norwood, MA, 1995Google Scholar
  40. 40.
    Ozaki, K.; Sekiguchi, H.; Wakana, S.; Goto, Y.; Umehara, Y.; Matsumoto, J., Novel optical probing system with submicron spatial resolution for internal diagnosis of VLSI circuits, Proc. Int. Test. Conf. 1996, 269–275Google Scholar
  41. 41.
    Zhang, F.; Chen, F.; Qiu, K., An integrated electro-optic E-field sensor with segmented electrodes, Microw. Opt. Tech. Lett. 2004, 40, 302–305CrossRefGoogle Scholar
  42. 42.
    Yang, K.; Katehi, L. P. B.; Whitaker, J. F., Electric field mapping system using an optical-fiber-based electrooptic probe, IEEE Microw. Wireless Comp. Lett. 2001, 11, 164–166CrossRefGoogle Scholar
  43. 43.
    Shi, Z.; Hau, S.; Luo, J.; Kim, T.-D.; Tucker, N. M.; Ka, J.-W.; Sun, H.; Pyajt, A.; Dalton, L.; Chen, A.; Jen, A. K.-Y., Highly efficient diels-alder crosslinkable electro-optic dendrimers for electric-field sensors, Adv. Funct. Mater. 2007, 17, 2557–2563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Antao Chen
    • 1
  1. 1.Applied Physics LaboratoryUniversity of WashingtonSeattleUSA

Personalised recommendations