Optofluidic Ring Resonator Dye Microlasers

  • Siyka I. Shopova
  • Scott Lacey
  • Ian M. White
  • Jonathan D. Suter
  • Yuze Sun
  • Xudong Fan
Part of the Integrated Analytical Systems book series (ANASYS)


We discuss versatile, miniaturized optofluidic ring resonator (OFRR) dye lasers that can be operated regardless of the refractive index of the liquid. The OFRR is a piece of a thin-walled fused silica capillary that integrates the photonic ring resonator with microfluidics. In an OFRR dye laser, the active lasing materials (such as dyes) are passed through the capillary whereas the circular cross section forms a ring resonator and supports whispering gallery modes that provide optical feedback for lasing. Because of the high Q-factors extremely low lasing threshold is achieved (25 nJ/mm2). The operation wavelength can conveniently be changed by using different dyes and fine-tuned with solvent. The OFRR laser is excited through direct excitation or through efficient energy transfer. The laser can be efficiently out-coupled through a fiber taper in contact with the capillary, thus providing easy guiding for the laser emission. Theoretical analysis and experimental results for OFRR lasers are presented.


Fluorescence Resonance Energy Transfer Ring Resonator Molecular Beacon Lasing Threshold Efficient Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Wallace H. Coulter Foundation Early Career Award, NSF-CAREER (CBET-0747398), and NSF (ECCS‐0853399)


  1. 1.
    Psaltis, D.; Quake, S. R.; Yang, C. H., Developing optofluidic technology through the fusion of microfluidics and optics, Nature 2006, 442, 381–386CrossRefGoogle Scholar
  2. 2.
    Balslev, S.; Kristensen, A., Microfuidic single-mode laser using high-order Bragg grating and antiguiding segments, Opt. Express 2005, 13, 344–351CrossRefGoogle Scholar
  3. 3.
    Galas, J. C.; Torres, J.; Belotti, M.; Kou, Q.; Chen, Y., Microfluidic tunable dye laser with integrated mixer and ring resonator, Appl. Phys. Lett. 2005, 86, 264101CrossRefGoogle Scholar
  4. 4.
    Helbo, B.; Kristensen, A.; Menon, A., A micro-cavity fluidic dye laser, J. Micromech. Microeng. 2003, 13, 307–311CrossRefGoogle Scholar
  5. 5.
    Kou, Q.; Yesilyurt, I.; Chen, Y., Collinear dual-color laser emission from a microfluidic dye laser, Appl. Phys. Lett. 2006, 88, 091101CrossRefGoogle Scholar
  6. 6.
    Li, Z. Y.; Psaltis, D., Optofluidic distributed feedback dye lasers, IEEE J. Sel. Top. Quantum Electron. 2007, 13, 185–193CrossRefGoogle Scholar
  7. 7.
    Vezenov, D. V.; Mayers, B. T.; Conroy, R. S.; Whitesides, G. M.; Snee, P. T.; Chan, Y.; Nocera, D. G.; Bawendi, M. G., A low-threshold, high-efficiency microfluidic waveguide laser J. Am. Chem. Soc. 2005, 127, 8952–8953CrossRefGoogle Scholar
  8. 8.
    Knight, J. C.; Driver, H. S. T.; Hutcheon, R. J.; Robertson, G. N., Core-resonance capillary-fiber whispering-gallery-mode laser, Opt. Lett. 1992, 17, 1280–1282CrossRefGoogle Scholar
  9. 9.
    Moon, H.-J.; An, K., Interferential coupling effect on the whispering-gallery mode lasing in a double-layered microcylinder, Appl. Phys. Lett. 2002, 80, 3250–3252CrossRefGoogle Scholar
  10. 10.
    Moon, H.-J.; Chough, Y.-T.; An, K., Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys. Rev. Lett. 2000, 85, 3161–3164CrossRefGoogle Scholar
  11. 11.
    Moon, H.-J.; Park, G.-W.; Lee, S.-B.; An, K.; Lee, J.-H., Laser oscillations of resonance modes in a thin gain-doped ring-type cylindrical microcavity, Opt. Commun. 2004, 235, 401–407CrossRefGoogle Scholar
  12. 12.
    Shevchenko, A.; Lindfors, K.; Buchter, S. C.; Kaivola, M., Evanescent-wave pumped cylindrical microcavity laser with intense output radiation, Opt. Commun. 2005, 245, 349–353CrossRefGoogle Scholar
  13. 13.
    Chang, R. K.; Campillo, A. J. Optical Processes in Microcavities, World Scientific, Singapore, 1996Google Scholar
  14. 14.
    Gersborg-Hansen, M.; Kristensen, A., Tunability of optofluidic distributed feedback dye lasers, Opt. Express 2007, 15, 137–142CrossRefGoogle Scholar
  15. 15.
    Moon, H.-J.; Park, G.-W.; Lee, S.-B.; An, K.; Lee, J.-H., Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator, Appl. Phys. Lett. 2004, 84, 4547–4549CrossRefGoogle Scholar
  16. 16.
    Suter, J. D.; Sun, Y.; Howard, D. J.; Viator, J. A.; Fan, X., PDMS embedded opto-fluidic microring resonator lasers, Opt. Express 2008, 16, 10248–10253CrossRefGoogle Scholar
  17. 17.
    Shopova, S. I.; Zhu, H.; Fan, X.; Zhang, P., Optofluidic ring resonator based dye laser, Appl. Phys. Lett. 2007, 90, 221101CrossRefGoogle Scholar
  18. 18.
    Shopova, S. I.; Cupps, J. M.; Zhang, P.; Henderson, E. P.; Lacey, S.; Fan, X., Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer, Opt. Express 2007, 15, 12735–12742CrossRefGoogle Scholar
  19. 19.
    Lacey, S.; White, I. M.; Sun, Y.; Shopova, S. I.; Cupps, J. M.; Zhang, P.; Fan, X., Versatile opto-fluidic ring resonator lasers with ultra-low threshold, Opt. Express 2007, 15, 15523–15530CrossRefGoogle Scholar
  20. 20.
    Shopova, S. I.; Lacey, S.; White, I.; Sun, Y.; Zhu, H.; Zhang, P.; Fan, X., Optofluidic ring resonator dye microlasers, In Proceedings of SPIE, 6872 (Laser Resonators and Beam Control X) San Jose, California, 68720W, 2008 Google Scholar
  21. 21.
    X.; White, I. M.; Zhu, H.; Suter, J. D.; Oveys, H., Overview of novel integrated optical ring resonator bio/chemical sensors, In Proceedings of SPIE, 6452 (Laser Resonators and Beam Control IX) San Jose, California, 6452M, 2007 Google Scholar
  22. 22.
    White, I. M.; Oveys, H.; Fan, X., Liquid core optical ring resonator sensors, Opt. Lett. 2006, 31, 1319–1321CrossRefGoogle Scholar
  23. 23.
    White, I.; Gohring, J.; Sun, Y.; Yang, G.; Lacey, S.; Fan, X., Versatile waveguide-coupled optofluidic devices based on liquid core optical ring resonators, Appl. Phys. Lett. 2007, 91, 241104CrossRefGoogle Scholar
  24. 24.
    Teraoka, I.; Arnold, S., Coupled whispering gallery modes in a multilayer-coated microsphere, Opt. Lett. 2007, 32, 1147–1149CrossRefGoogle Scholar
  25. 25.
    Forster, T., Transfer mechanisms of electronic excitation, Disc. Faraday Soc. 1959, 27, 7–17CrossRefGoogle Scholar
  26. 26.
    Arnold, S.; Folan, L. M., Energy transfer and the photon lifetime within an aerosol particle, Opt. Lett. 1989, 14, 387–389CrossRefGoogle Scholar
  27. 27.
    Götzinger, S.; Menezes, L. d. S.; Mazzei, A.; Kühn, S.; Sandoghdar, V.; Benson, O., Controlled photon transfer between two individual nanoemitters via shared high-q modes of a microsphere resonator, Nano Lett. 2006, 6, 1151–1154CrossRefGoogle Scholar
  28. 28.
    Clapp, A. R.; Medintz, I. L.; Mattoussi, H., Forster resonance energy transfer investigations using quantum-dot fluorophores, Chemphyschem 2006, 7, 47–57CrossRefGoogle Scholar
  29. 29.
    Leatherdale, C. A.; Woo, W. K.; Mikulec, F. V.; Bawendi, M. G., On the absorption cross section of CdSe nanocrystal quantum dots, J. Phys. Chem. B 2002, 106, 7619–7622CrossRefGoogle Scholar
  30. 30.
    Rose, A.; Zhu, Z. G.; Madigan, C. F.; Swager, T. M.; Bulovic, V., Sensitivity gains in chemosensing by lasing action in organic polymers, Nature 2005, 434, 876–879CrossRefGoogle Scholar
  31. 31.
    Wun, A. W.; Snee, P. T.; Chan, Y.; Bawendi, M. G.; Nocera, D. G., Non-linear transduction strategies for chemo/biosensing on small length scales, J. Mater. Chem. 2005, 15, 2697–2706CrossRefGoogle Scholar
  32. 32.
    Steckl, A. J., DNA - a new material for photonics?, Nature Photon. 2007, 1, 3–5CrossRefGoogle Scholar
  33. 33.
    Yu, Z.; Li, W.; Hagen, J. A.; Zhou, Y.; Klotzkin, D.; Grote, J. G.; Steckl, A. J., Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine, Appl. Opt. 2007, 46, 1507–1513CrossRefGoogle Scholar
  34. 34.
    Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell, 4th edn.; Garland, New York, NY, 2002 Google Scholar
  35. 35.
    Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res. 2003, 31, 3406–3415CrossRefGoogle Scholar
  36. 36.
    Tyagi, S.; Kramer, F. R., Molecular beacons: Probes that fluoresce upon hybridization, Nature Biotechnol. 1996, 14, 303–308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Siyka I. Shopova
  • Scott Lacey
  • Ian M. White
  • Jonathan D. Suter
    • 1
  • Yuze Sun
    • 1
  • Xudong Fan
    • 1
  1. 1.Department of Biological EngineeringUniversity of MissouriColumbiaUSA

Personalised recommendations