Single Molecule Analysis with Planar Optofluidics

  • Holger Schmidt
  • Aaron R. Hawkins
Part of the Integrated Analytical Systems book series (ANASYS)


Integrated optofluidics uses integrated optical elements for building a new generation of analytical devices that feature planar architectures for both fluidics and optics. Liquid-core optical waveguides that can simultaneously guide both liquids and light through micron-scale hollow channels are essential components of such a platform. Here, we review advances in single particle detection, manipulation, and analysis in integrated optofluidic chips based on liquid-core antiresonant reflecting optical waveguides (ARROWs). Starting from a discussion of physical principles and fabrication methods, we discuss demonstrations of liquid-core waveguiding, fluorescence and Raman detection, single molecule analysis, and all-optical particle manipulation. Special emphasis is placed on the on-chip implementation of fluorescence correlation spectroscopy for analysis of biological particles, including liposomes and viruses. An outlook on future opportunities and challenges is given.


Fluorescence Resonance Energy Transfer Loss Coefficient Excitation Volume Fluorescence Correlation Spectroscopy Liquid Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many students and colleagues have contributed to the research described in the preceding sections. It is a great pleasure to acknowledge the contributions of D. Yin, J.P. Barber, D.W. Deamer, P. Measor, E.J. Lunt, S. Kühn, M.I. Rudenko, M. Smith, B.S. Phillips, M.R. Holmes, D. Ermolenko, H.F. Noller, L. Seballos, J. Zhang, M.G. Finn, U. Håkanson, and V. Sandoghdar. The different aspects of this work were enabled by financial support from the National Institutes of Health (grants R21EB003430 and R01EB006097), the National Science Foundation (grants ECS-0528730 and ECS-0528714), the W.M. Keck Foundation (National Academies Keck Futures Initiative Award NAKFI-Nano14), the California Systemwide Biotechnology Research & Education Program Training Program (grant UC-GREAT 2005–245), NASA (NASA/UARC Aligned Research Program (ARP) grant), the D. Huber Foundation, and Ted Goldstein.


  1. 1.
    Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications, and trends for future development, Fresenius J. Anal. Chem. 1998, 362, 349–373CrossRefGoogle Scholar
  2. 2.
    Reyes D. R.; Iossifidis, D.; Auroux, P.; Manz, A., Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem. 2002, 74, 2623–2636CrossRefGoogle Scholar
  3. 3.
    Psaltis D.; Quake S. R.; Yang C., Developing optofluidic technology through the fusion of microfluidics and optics, Nature 2006, 442, 381–386CrossRefGoogle Scholar
  4. 4.
    Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review, Sensors Actuators B 1999, 54, 3–15CrossRefGoogle Scholar
  5. 5.
    Sharma, A. K.; Jha, R.; Gupta, B. D., Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors J. 2007, 7, 1118–1129CrossRefGoogle Scholar
  6. 6.
    Risk W. P.; Kim H. C.; Miller R. D.; Temkin H.; Gangopadhyay S., Optical waveguides with an aqueous core and a low-index nanoporous cladding, Opt. Express 2004, 12, 6446–6455CrossRefGoogle Scholar
  7. 7.
    Schelle, B.; Dress, P.; Franke, H.; Klein, K. F.; Slupek, J., Physical characterization of lightguide capillary cells, J. Phys. D: Appl. Phys. 1999, 32, 3157–3163CrossRefGoogle Scholar
  8. 8.
    Datta, A.; Eom, I.; Dhar, A.; Kuban, P.; Manor, R.; Ahmad, I.; Gangopadhyay, S.; Dallas, T.; Holtz, M.; Temkin, H.; Dasgupta, P., Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon, IEEE Sensors J. 2003, 3, 788–795CrossRefGoogle Scholar
  9. 9.
    Mohebbi, M.; Fedosejevs, R.; Gopal, V.; Harrington, J. A., Silver-coated hollow-glass waveguide for applications at 800 nm, Appl. Opt. 2002, 41, 7031–7035CrossRefGoogle Scholar
  10. 10.
    Grewe, M.; Grosse, A.; Fouckhardt, H., Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries, Appl. Phys. B. 2000, 70, S839–S847CrossRefGoogle Scholar
  11. 11.
    Wolfe, D. B.; Conroy, R. S.; Garstecki, P.; Mayers, B. T.; Fischbach, M. A.; Paul, K. E.; Prentiss, M.; Whitesides, G. M., Dynamic control of liquid-core/liquid-cladding optical waveguides, PNAS 2004, 101, 12434–12438CrossRefGoogle Scholar
  12. 12.
    Vezenov, D. B.; Mayers, B. T.; Wolfe, D. B.; Whitesides, G. M., Integrated fluorescent light source for optofluidic applications, Appl. Phys. Lett. 2005, 86, 041104Google Scholar
  13. 13.
    Almeida, V. R.; Xu, Q.; Barrios, C. A.; Lipson, M., Guiding and confining light in void nanostructures, Opt. Lett. 2004, 29, 1209–1211CrossRefGoogle Scholar
  14. 14.
    Xu, Q.; Almeida, V. R.; Panepucci, R. R.; Lipson, M., Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 2004, 29, 1626–1628CrossRefGoogle Scholar
  15. 15.
    Mach, P.; Dolinski, M.; Baldwin, K. W.; Rogers, J. A.; Kerbage, C.; Windeler, R. S.; Eggleton, B. J., Tunable microfluidic optical fiber. Appl. Phys. Lett. 2002, 80, 4294–4296CrossRefGoogle Scholar
  16. 16.
    Erickson, D.; Rockwood, T.; Emery, T.; Scherer, A.; Psaltis, D., Nanofluidic tuning of photonic crystal circuits, Opt. Lett. 2006, 31, 59–61CrossRefGoogle Scholar
  17. 17.
    Yan, H.; Gu, C.; Yang, C.; Liu, J.; Jin, G.; Zhang, J.; Hou, L.; Yao, Y., Hollow core photonic crystal fiber surface-enhanced Raman probe, Appl. Phys. Lett. 2006, 89, 204101Google Scholar
  18. 18.
    Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N., Water-core Fresnel fiber, Opt. Exp. 2005, 13, 3890–3895CrossRefGoogle Scholar
  19. 19.
    Duguay, M. A.; Kokubun, Y.; Koch, T.; Pfeiffer, L., Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures, Appl. Phys. Lett. 1986, 49, 13–15CrossRefGoogle Scholar
  20. 20.
    Delonge, T.; Fouckhardt, H., Integrated optical detection cell based on Bragg reflecting waveguides, J. Chromat. A 1995, 716, 135–139CrossRefGoogle Scholar
  21. 21.
    Bernini, R.; Campopiano, S.; Zeni, L.; Sarro, P. M., ARROW optical waveguides based sensors, Sensors Actuator B 2004, 100, 143–6CrossRefGoogle Scholar
  22. 22.
    Campopiano, S.; Bernini, R.; Zeni, R.; Sarro, P. M., Microfluidic sensor based on integrated optical hollow waveguides, Opt. Lett. 2004, 29, 1894–1896CrossRefGoogle Scholar
  23. 23.
    Bernini, R.; DeNuccio, E.; Minardo, A.; Zeni, L.; Sarro, P. M., Liquid-core/liquid-cladding integrated silicon ARROW waveguides, Opt. Comm. 2008, 281, 2062–2066CrossRefGoogle Scholar
  24. 24.
    Yeh, P., Optical Waves in Layered Media, 2nd edn.; Wiley-Interscience, New York, 2005Google Scholar
  25. 25.
    Archambault, J. L.; Black, R. J.; Lacroix, S.; Bures, J., Loss calculations for antiresonant waveguides, J. Lightw. Tech. 1993, 11, 416–423CrossRefGoogle Scholar
  26. 26.
    Marcatili, E. A. J.; Schmeltzer, R. A., Bell Syst. Tech. J. 1964, 43, 1783Google Scholar
  27. 27.
    Schmidt, H.; Yin, D.; Barber, J. P.; Hawkins, A. R., Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids, IEEE J. Sel. Topics Qu. Elec. 2005, 11, 519–527CrossRefGoogle Scholar
  28. 28.
    Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd edn.; Springer, New York, 2006 CrossRefGoogle Scholar
  29. 29.
    Measor, P.; Lunt E. J.; Jones C.; Hawkins, A. R.; Schmidt, H., Characterization of optofluidic ARROW rejection filter devices, In Technical Digest, IEEE Summer Topical Meetings, Acapulco, MX, July 21–23, 2008 Google Scholar
  30. 30.
    Cordeiro, C. M. B.; de Matos, C. J. S.; dos Santos, E. M.; Bozolan, A.; Ong, J. S. K.; Facincani, T.; Chesini, G.; Vaz, A. R.; Brito Cruz, C. H., Towards practical liquid and gas sensing with photonic crystal fibres: Side access to the fibre microstructure and single-mode liquid-core fibre, Meas. Sci. Tech. 2007, 18, 3075–3081CrossRefGoogle Scholar
  31. 31.
    Metz, S.; Jiguet, S.; Bertsch, A.; Renaud, P., Polymide and SU-8 microflu-idic devices manufactured by heat-depolymerizable sacrificial material technique, Lab Chip. 2004, 4, 114–120CrossRefGoogle Scholar
  32. 32.
    Yin, D.; Barber J. P.; Hawkins A. R.; Schmidt H., Low-loss integrated optical sensors based on hollow-core ARROW waveguides, Proc SPIE 2005, 5730, 218–225CrossRefGoogle Scholar
  33. 33.
    Yin, D.; Barber, J. P.; Hawkins, A. R.; Deamer, D. W.; Schmidt, H., Integrated optical waveguides with liquid cores, Appl. Phys. Lett. 2004, 85, 3477–3479CrossRefGoogle Scholar
  34. 34.
    Barber, J. P.; Lunt, E. J.; George, Z. A.; Yin, D.; Schmidt, H.; Hawkins, A. R., Integrated hollow waveguides with arch-shaped cores, IEEE Photonic Tech. Lett. 2006, 18, 28–30CrossRefGoogle Scholar
  35. 35.
    Hubbard, N. B.; Howell, L. L.; Barber, J. P.; Conkey, D. B.; Hawkins, A. R.; Schmidt, H., Mechanical models and design rules for on-chip micro-channels with sacrificial cores, J Micromech Microeng 2005, 15, 720–727CrossRefGoogle Scholar
  36. 36.
    Barber, J. P.; Conkey, D. B.; Lee, J. R.; Hubbard, N. B.; Howell, L. L.; Schmidt, H.; Hawkins, A. R., Fabrication of hollow waveguides with sacrificial aluminum cores, IEEE Photonic Tech Lett. 2005, 17, 363–365CrossRefGoogle Scholar
  37. 37.
    Lee, J. R.; Barber, J. P.; George, Z. A.; Lee, M. L.; Schmidt, H.; Hawkins, A. R., Micro-channels with different core shapes fabricated using sacrificial etching, J. Micro/Nanolith. MEMS MOEMS 2007, 6, 013010Google Scholar
  38. 38.
    Yin, D.; Barber, J. P.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Single-molecule detection using planar integrated optics on a chip, Opt. Lett. 2006, 31, 2136–2138CrossRefGoogle Scholar
  39. 39.
    Barber, J. P.; Lunt, E. J.; Yin, D.; Schmidt, H.; Hawkins, A. R., Monolithic fabri-cation of hollow ARROW based sensors, Proc. SPIE 2006, 6110, 61100HGoogle Scholar
  40. 40.
    Yin, D.; Barber, J. P.; Hawkins, A. R.; Schmidt, H., Highly efficient fluo-rescence detection in picoliter volume liquid-core waveguides, Appl. Phys. Lett. 2005, 87, 211111Google Scholar
  41. 41.
    Yin, D.; Barber, J. P.; Lunt, E. J.; Hawkins, A. R.; Schmidt, H., Optical char-acterization of arch-shaped ARROW waveguides with liquid cores, Opt. Express 2005, 13, 10564–10570CrossRefGoogle Scholar
  42. 42.
    Measor, P.; Lunt, E. J.; Seballos, L.; Yin, D.; Zhang, J. Z.; Hawkins, A. R.; Schmidt, H., On-chip Surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides, Appl. Phys. Lett. 2007, 90, 211107Google Scholar
  43. 43.
    Yin, D.; Barber, J. P.; Hawkins, A. R.; Schmidt, H., Single molecule sensitivity and electrically controlled fluorescence detection in integrated planar ARROW waveguides, In CLEO/QELS conference, Long Beach, CA, May 21–26, 2006 Google Scholar
  44. 44.
    Rigler, R.; Elson, E. S., Fluorescence Correlation Spectroscopy, 1st edn.; Springer, New York, 2001 CrossRefGoogle Scholar
  45. 45.
    Yin, D.; Lunt, E. J.; Barman, A.; Hawkins, A. R.; Schmidt, H., Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics, Opt. Express 2007, 15, 7290–7295CrossRefGoogle Scholar
  46. 46.
    Lenne, P. F.; Etienne, E.; Rigneault, H., Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures, Appl. Phys. Lett. 2002, 80, 4106–4108CrossRefGoogle Scholar
  47. 47.
    Yin, D.; Lunt, E. J.; Rudenko, M. I.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Planar optofluidic chip for single particle detection, manipulation, and analysis, Lab Chip 2007, 7, 1171CrossRefGoogle Scholar
  48. 48.
    Rudenko, M. I.; K hn, S.; Lunt, E. J.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Ultrasensitive Qβ Phase Analysis Using Fluorescence Correlation Spectroscopy on an Optofluidic Chip, Biosensors and Bioelectronics 2009, 24, 3258–3263Google Scholar
  49. 49.
    Ashkin, A., Optical trapping and manipulation of neutral particles using lasers, PNAS 1994, 94, 4853–4860CrossRefGoogle Scholar
  50. 50.
    Ashkin, A.; Dziedzic, J. M.; Optical trapping and manipulation of viruses and bacteria, Science 1987, 235, 1517–1520CrossRefGoogle Scholar
  51. 51.
    Ashkin, A.; Dziedzic, J. M.; Yamane, T., Optical trapping and manipulation of single cells using infrared laser beams, Nature 1987, 330, 769–771CrossRefGoogle Scholar
  52. 52.
    Renn, M. J.; Pastel, R.; Lewandowski, H. J., Laser guidance and trapping of mesoscale particles in hollow-core optical fibers, Phys. Rev. Lett. 1999, 82, 1574–1577CrossRefGoogle Scholar
  53. 53.
    Mandal, S.; Erickson, D., Optofluidic transport in liquid core waveguiding structures, Appl. Phys. Lett. 2007, 90, 184103Google Scholar
  54. 54.
    Cran-McGreehin, S.; Krauss, T. F.; Dholakia, K., Integrated monolithic optical manipulation, Lab Chip 2006, 6, 1122–1124CrossRefGoogle Scholar
  55. 55.
    Schmidt, B. S.; Yang, A. H. J.; Erickson D.; Lipson, M., Optofluidic trapping and transport on solid core waveguides within a microfluidic device, Opt. Express 2007, 15, 14322–14334CrossRefGoogle Scholar
  56. 56.
    Measor, P.; Kühn, S.; Lunt, E. J.; Phillips, B. S.; Hawkins, A. R.; Schmidt, H., Hollow-core waveguide characterization by optically induced particle transport, Opt. Lett. 2008, 33, 672–674CrossRefGoogle Scholar
  57. 57.
    Hunsperger, R. G. Integrated Optics, 5th edn.; Springer, New York, 2002 CrossRefGoogle Scholar
  58. 58.
    Deamer, D.; Branton, D., Characterization of nucelic acids by nanopore analysis, Acc. Chem. Res. 2002, 35, 817–825CrossRefGoogle Scholar
  59. 59.
    Kühn, S; Measor, P; Lunt, E.J.; Phillips, B.S.; Deamer, D.W.; Hawkins, A.R.; Schmidt, H., Loss-based optical trap for on-chip particle analysis, Lab on Chip 2009, 9, 2212–2216CrossRefGoogle Scholar
  60. 60.
    Kühn, S.; Measor, P.; Lunt, E. J.; Hawkins, A. R.; Schmidt, H., Particle manipulation with integrated optofluidic traps, Technical Digest, IEEE Summer Topical Meetings, Acapulco, MX, July 21–23, 2008 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Holger Schmidt
    • 1
  • Aaron R. Hawkins
    • 2
  1. 1.School of EngineeringUniversity of California Santa CruzSanta CruzUSA
  2. 2.ECEn DepartmentBrigham Young UniversityProvoUSA

Personalised recommendations