Skip to main content

Single Molecule Analysis with Planar Optofluidics

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Integrated optofluidics uses integrated optical elements for building a new generation of analytical devices that feature planar architectures for both fluidics and optics. Liquid-core optical waveguides that can simultaneously guide both liquids and light through micron-scale hollow channels are essential components of such a platform. Here, we review advances in single particle detection, manipulation, and analysis in integrated optofluidic chips based on liquid-core antiresonant reflecting optical waveguides (ARROWs). Starting from a discussion of physical principles and fabrication methods, we discuss demonstrations of liquid-core waveguiding, fluorescence and Raman detection, single molecule analysis, and all-optical particle manipulation. Special emphasis is placed on the on-chip implementation of fluorescence correlation spectroscopy for analysis of biological particles, including liposomes and viruses. An outlook on future opportunities and challenges is given.

The online version of the Erratum chapter can be found at http://dx.doi.org/10.1007/978-0-387-98063-8_20

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Potyrailo, R. A.; Hobbs, S. E.; Hieftje, G. M., Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications, and trends for future development, Fresenius J. Anal. Chem. 1998, 362, 349–373

    Article  CAS  Google Scholar 

  2. Reyes D. R.; Iossifidis, D.; Auroux, P.; Manz, A., Micro total analysis systems. 1. Introduction, theory, and technology, Anal. Chem. 2002, 74, 2623–2636

    Article  CAS  Google Scholar 

  3. Psaltis D.; Quake S. R.; Yang C., Developing optofluidic technology through the fusion of microfluidics and optics, Nature 2006, 442, 381–386

    Article  CAS  Google Scholar 

  4. Homola, J.; Yee, S. S.; Gauglitz, G., Surface plasmon resonance sensors: review, Sensors Actuators B 1999, 54, 3–15

    Article  CAS  Google Scholar 

  5. Sharma, A. K.; Jha, R.; Gupta, B. D., Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sensors J. 2007, 7, 1118–1129

    Article  Google Scholar 

  6. Risk W. P.; Kim H. C.; Miller R. D.; Temkin H.; Gangopadhyay S., Optical waveguides with an aqueous core and a low-index nanoporous cladding, Opt. Express 2004, 12, 6446–6455

    Article  CAS  Google Scholar 

  7. Schelle, B.; Dress, P.; Franke, H.; Klein, K. F.; Slupek, J., Physical characterization of lightguide capillary cells, J. Phys. D: Appl. Phys. 1999, 32, 3157–3163

    Article  CAS  Google Scholar 

  8. Datta, A.; Eom, I.; Dhar, A.; Kuban, P.; Manor, R.; Ahmad, I.; Gangopadhyay, S.; Dallas, T.; Holtz, M.; Temkin, H.; Dasgupta, P., Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon, IEEE Sensors J. 2003, 3, 788–795

    Article  CAS  Google Scholar 

  9. Mohebbi, M.; Fedosejevs, R.; Gopal, V.; Harrington, J. A., Silver-coated hollow-glass waveguide for applications at 800 nm, Appl. Opt. 2002, 41, 7031–7035

    Article  CAS  Google Scholar 

  10. Grewe, M.; Grosse, A.; Fouckhardt, H., Theoretical and experimental investigations of the optical waveguiding properties of on-chip microfabricated capillaries, Appl. Phys. B. 2000, 70, S839–S847

    Article  Google Scholar 

  11. Wolfe, D. B.; Conroy, R. S.; Garstecki, P.; Mayers, B. T.; Fischbach, M. A.; Paul, K. E.; Prentiss, M.; Whitesides, G. M., Dynamic control of liquid-core/liquid-cladding optical waveguides, PNAS 2004, 101, 12434–12438

    Article  CAS  Google Scholar 

  12. Vezenov, D. B.; Mayers, B. T.; Wolfe, D. B.; Whitesides, G. M., Integrated fluorescent light source for optofluidic applications, Appl. Phys. Lett. 2005, 86, 041104

    Google Scholar 

  13. Almeida, V. R.; Xu, Q.; Barrios, C. A.; Lipson, M., Guiding and confining light in void nanostructures, Opt. Lett. 2004, 29, 1209–1211

    Article  Google Scholar 

  14. Xu, Q.; Almeida, V. R.; Panepucci, R. R.; Lipson, M., Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material, Opt. Lett. 2004, 29, 1626–1628

    Article  CAS  Google Scholar 

  15. Mach, P.; Dolinski, M.; Baldwin, K. W.; Rogers, J. A.; Kerbage, C.; Windeler, R. S.; Eggleton, B. J., Tunable microfluidic optical fiber. Appl. Phys. Lett. 2002, 80, 4294–4296

    Article  CAS  Google Scholar 

  16. Erickson, D.; Rockwood, T.; Emery, T.; Scherer, A.; Psaltis, D., Nanofluidic tuning of photonic crystal circuits, Opt. Lett. 2006, 31, 59–61

    Article  Google Scholar 

  17. Yan, H.; Gu, C.; Yang, C.; Liu, J.; Jin, G.; Zhang, J.; Hou, L.; Yao, Y., Hollow core photonic crystal fiber surface-enhanced Raman probe, Appl. Phys. Lett. 2006, 89, 204101

    Google Scholar 

  18. Martelli, C.; Canning, J.; Lyytikainen, K.; Groothoff, N., Water-core Fresnel fiber, Opt. Exp. 2005, 13, 3890–3895

    Article  Google Scholar 

  19. Duguay, M. A.; Kokubun, Y.; Koch, T.; Pfeiffer, L., Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures, Appl. Phys. Lett. 1986, 49, 13–15

    Article  CAS  Google Scholar 

  20. Delonge, T.; Fouckhardt, H., Integrated optical detection cell based on Bragg reflecting waveguides, J. Chromat. A 1995, 716, 135–139

    Article  CAS  Google Scholar 

  21. Bernini, R.; Campopiano, S.; Zeni, L.; Sarro, P. M., ARROW optical waveguides based sensors, Sensors Actuator B 2004, 100, 143–6

    Article  CAS  Google Scholar 

  22. Campopiano, S.; Bernini, R.; Zeni, R.; Sarro, P. M., Microfluidic sensor based on integrated optical hollow waveguides, Opt. Lett. 2004, 29, 1894–1896

    Article  Google Scholar 

  23. Bernini, R.; DeNuccio, E.; Minardo, A.; Zeni, L.; Sarro, P. M., Liquid-core/liquid-cladding integrated silicon ARROW waveguides, Opt. Comm. 2008, 281, 2062–2066

    Article  CAS  Google Scholar 

  24. Yeh, P., Optical Waves in Layered Media, 2nd edn.; Wiley-Interscience, New York, 2005

    Google Scholar 

  25. Archambault, J. L.; Black, R. J.; Lacroix, S.; Bures, J., Loss calculations for antiresonant waveguides, J. Lightw. Tech. 1993, 11, 416–423

    Article  Google Scholar 

  26. Marcatili, E. A. J.; Schmeltzer, R. A., Bell Syst. Tech. J. 1964, 43, 1783

    Google Scholar 

  27. Schmidt, H.; Yin, D.; Barber, J. P.; Hawkins, A. R., Hollow-core waveguides and 2D waveguide arrays for integrated optics of gases and liquids, IEEE J. Sel. Topics Qu. Elec. 2005, 11, 519–527

    Article  CAS  Google Scholar 

  28. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, 3rd edn.; Springer, New York, 2006

    Book  Google Scholar 

  29. Measor, P.; Lunt E. J.; Jones C.; Hawkins, A. R.; Schmidt, H., Characterization of optofluidic ARROW rejection filter devices, In Technical Digest, IEEE Summer Topical Meetings, Acapulco, MX, July 21–23, 2008

    Google Scholar 

  30. Cordeiro, C. M. B.; de Matos, C. J. S.; dos Santos, E. M.; Bozolan, A.; Ong, J. S. K.; Facincani, T.; Chesini, G.; Vaz, A. R.; Brito Cruz, C. H., Towards practical liquid and gas sensing with photonic crystal fibres: Side access to the fibre microstructure and single-mode liquid-core fibre, Meas. Sci. Tech. 2007, 18, 3075–3081

    Article  CAS  Google Scholar 

  31. Metz, S.; Jiguet, S.; Bertsch, A.; Renaud, P., Polymide and SU-8 microflu-idic devices manufactured by heat-depolymerizable sacrificial material technique, Lab Chip. 2004, 4, 114–120

    Article  CAS  Google Scholar 

  32. Yin, D.; Barber J. P.; Hawkins A. R.; Schmidt H., Low-loss integrated optical sensors based on hollow-core ARROW waveguides, Proc SPIE 2005, 5730, 218–225

    Article  CAS  Google Scholar 

  33. Yin, D.; Barber, J. P.; Hawkins, A. R.; Deamer, D. W.; Schmidt, H., Integrated optical waveguides with liquid cores, Appl. Phys. Lett. 2004, 85, 3477–3479

    Article  CAS  Google Scholar 

  34. Barber, J. P.; Lunt, E. J.; George, Z. A.; Yin, D.; Schmidt, H.; Hawkins, A. R., Integrated hollow waveguides with arch-shaped cores, IEEE Photonic Tech. Lett. 2006, 18, 28–30

    Article  Google Scholar 

  35. Hubbard, N. B.; Howell, L. L.; Barber, J. P.; Conkey, D. B.; Hawkins, A. R.; Schmidt, H., Mechanical models and design rules for on-chip micro-channels with sacrificial cores, J Micromech Microeng 2005, 15, 720–727

    Article  CAS  Google Scholar 

  36. Barber, J. P.; Conkey, D. B.; Lee, J. R.; Hubbard, N. B.; Howell, L. L.; Schmidt, H.; Hawkins, A. R., Fabrication of hollow waveguides with sacrificial aluminum cores, IEEE Photonic Tech Lett. 2005, 17, 363–365

    Article  Google Scholar 

  37. Lee, J. R.; Barber, J. P.; George, Z. A.; Lee, M. L.; Schmidt, H.; Hawkins, A. R., Micro-channels with different core shapes fabricated using sacrificial etching, J. Micro/Nanolith. MEMS MOEMS 2007, 6, 013010

    Google Scholar 

  38. Yin, D.; Barber, J. P.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Single-molecule detection using planar integrated optics on a chip, Opt. Lett. 2006, 31, 2136–2138

    Article  CAS  Google Scholar 

  39. Barber, J. P.; Lunt, E. J.; Yin, D.; Schmidt, H.; Hawkins, A. R., Monolithic fabri-cation of hollow ARROW based sensors, Proc. SPIE 2006, 6110, 61100H

    Google Scholar 

  40. Yin, D.; Barber, J. P.; Hawkins, A. R.; Schmidt, H., Highly efficient fluo-rescence detection in picoliter volume liquid-core waveguides, Appl. Phys. Lett. 2005, 87, 211111

    Google Scholar 

  41. Yin, D.; Barber, J. P.; Lunt, E. J.; Hawkins, A. R.; Schmidt, H., Optical char-acterization of arch-shaped ARROW waveguides with liquid cores, Opt. Express 2005, 13, 10564–10570

    Article  Google Scholar 

  42. Measor, P.; Lunt, E. J.; Seballos, L.; Yin, D.; Zhang, J. Z.; Hawkins, A. R.; Schmidt, H., On-chip Surface-enhanced Raman scattering (SERS) detection using integrated liquid-core waveguides, Appl. Phys. Lett. 2007, 90, 211107

    Google Scholar 

  43. Yin, D.; Barber, J. P.; Hawkins, A. R.; Schmidt, H., Single molecule sensitivity and electrically controlled fluorescence detection in integrated planar ARROW waveguides, In CLEO/QELS conference, Long Beach, CA, May 21–26, 2006

    Google Scholar 

  44. Rigler, R.; Elson, E. S., Fluorescence Correlation Spectroscopy, 1st edn.; Springer, New York, 2001

    Book  Google Scholar 

  45. Yin, D.; Lunt, E. J.; Barman, A.; Hawkins, A. R.; Schmidt, H., Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics, Opt. Express 2007, 15, 7290–7295

    Article  CAS  Google Scholar 

  46. Lenne, P. F.; Etienne, E.; Rigneault, H., Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures, Appl. Phys. Lett. 2002, 80, 4106–4108

    Article  CAS  Google Scholar 

  47. Yin, D.; Lunt, E. J.; Rudenko, M. I.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Planar optofluidic chip for single particle detection, manipulation, and analysis, Lab Chip 2007, 7, 1171

    Article  CAS  Google Scholar 

  48. Rudenko, M. I.; K hn, S.; Lunt, E. J.; Deamer, D. W.; Hawkins, A. R.; Schmidt, H., Ultrasensitive Qβ Phase Analysis Using Fluorescence Correlation Spectroscopy on an Optofluidic Chip, Biosensors and Bioelectronics 2009, 24, 3258–3263

    Google Scholar 

  49. Ashkin, A., Optical trapping and manipulation of neutral particles using lasers, PNAS 1994, 94, 4853–4860

    Article  Google Scholar 

  50. Ashkin, A.; Dziedzic, J. M.; Optical trapping and manipulation of viruses and bacteria, Science 1987, 235, 1517–1520

    Article  CAS  Google Scholar 

  51. Ashkin, A.; Dziedzic, J. M.; Yamane, T., Optical trapping and manipulation of single cells using infrared laser beams, Nature 1987, 330, 769–771

    Article  CAS  Google Scholar 

  52. Renn, M. J.; Pastel, R.; Lewandowski, H. J., Laser guidance and trapping of mesoscale particles in hollow-core optical fibers, Phys. Rev. Lett. 1999, 82, 1574–1577

    Article  CAS  Google Scholar 

  53. Mandal, S.; Erickson, D., Optofluidic transport in liquid core waveguiding structures, Appl. Phys. Lett. 2007, 90, 184103

    Google Scholar 

  54. Cran-McGreehin, S.; Krauss, T. F.; Dholakia, K., Integrated monolithic optical manipulation, Lab Chip 2006, 6, 1122–1124

    Article  CAS  Google Scholar 

  55. Schmidt, B. S.; Yang, A. H. J.; Erickson D.; Lipson, M., Optofluidic trapping and transport on solid core waveguides within a microfluidic device, Opt. Express 2007, 15, 14322–14334

    Article  CAS  Google Scholar 

  56. Measor, P.; Kühn, S.; Lunt, E. J.; Phillips, B. S.; Hawkins, A. R.; Schmidt, H., Hollow-core waveguide characterization by optically induced particle transport, Opt. Lett. 2008, 33, 672–674

    Article  Google Scholar 

  57. Hunsperger, R. G. Integrated Optics, 5th edn.; Springer, New York, 2002

    Book  Google Scholar 

  58. Deamer, D.; Branton, D., Characterization of nucelic acids by nanopore analysis, Acc. Chem. Res. 2002, 35, 817–825

    Article  CAS  Google Scholar 

  59. Kühn, S; Measor, P; Lunt, E.J.; Phillips, B.S.; Deamer, D.W.; Hawkins, A.R.; Schmidt, H., Loss-based optical trap for on-chip particle analysis, Lab on Chip 2009, 9, 2212–2216

    Article  Google Scholar 

  60. Kühn, S.; Measor, P.; Lunt, E. J.; Hawkins, A. R.; Schmidt, H., Particle manipulation with integrated optofluidic traps, Technical Digest, IEEE Summer Topical Meetings, Acapulco, MX, July 21–23, 2008

    Google Scholar 

Download references

Acknowledgments

Many students and colleagues have contributed to the research described in the preceding sections. It is a great pleasure to acknowledge the contributions of D. Yin, J.P. Barber, D.W. Deamer, P. Measor, E.J. Lunt, S. Kühn, M.I. Rudenko, M. Smith, B.S. Phillips, M.R. Holmes, D. Ermolenko, H.F. Noller, L. Seballos, J. Zhang, M.G. Finn, U. Håkanson, and V. Sandoghdar. The different aspects of this work were enabled by financial support from the National Institutes of Health (grants R21EB003430 and R01EB006097), the National Science Foundation (grants ECS-0528730 and ECS-0528714), the W.M. Keck Foundation (National Academies Keck Futures Initiative Award NAKFI-Nano14), the California Systemwide Biotechnology Research & Education Program Training Program (grant UC-GREAT 2005–245), NASA (NASA/UARC Aligned Research Program (ARP) grant), the D. Huber Foundation, and Ted Goldstein.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schmidt, H., Hawkins, A.R. (2009). Single Molecule Analysis with Planar Optofluidics. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_18

Download citation

Publish with us

Policies and ethics