Droplet Based Cavities and Lasers

  • Kristian Mølhave
  • Anders Kristensen
  • Niels Asger Mortensen
Part of the Integrated Analytical Systems book series (ANASYS)


The self-organized and molecularly smooth surface on liquid microdroplets makes them attractive as optical cavities with very high quality factors. This chapter describes the basic theory of optical modes in spherical droplets. The mechanical properties including vibrational excitation are also described, and their implications for microdroplet resonator technology are discussed. Optofluidic implementations of microdroplet resonators are reviewed with emphasis on the basic optomechanical properties.


Pump Power Water Droplet Superhydrophobic Surface Angular Momentum Quantum Number Levitate Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Danish Technical Research Council (grant no. 26-02-0064) and the Danish Council for Strategic Research through the Strategic Program for Young Researchers (grant no. 2117-05-0037).


  1. 1.
    Symes, R.; Sayer, R. M.; Reid, J. P., Cavity enhanced droplet spectroscopy: Principles, perspectives and prospects, Phys. Chem. Chem. Phys. 2004, 6, 474–487CrossRefGoogle Scholar
  2. 2.
    Bruus, H., Theoretical Microfluidics, Oxford University Press, Oxford, 2008 Google Scholar
  3. 3.
    Yarin, A. L.; Weiss, D. A.; Brenn, G.; Rensink, D., Acoustically levitated drops: Drop oscillation and break-up driven by ultrasound modulation, Int. J. Multiphase Flow 2002, 28, 887–910CrossRefGoogle Scholar
  4. 4.
    Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, Butterworth Heinemann, Oxford, 1987Google Scholar
  5. 5.
    Qian, S. X.; Snow, J. B.; Tzeng, H. M.; Chang, R. K., Lasing droplets – highlighting the liquid-air interface by laser-emission, Science 1986, 231, 486–488CrossRefGoogle Scholar
  6. 6.
    Omrane, A.; Santesson, S.; Alden, M.; Nilsson, S., Laser techniques in acoustically levitated micro droplets, Lab. Chip. 2004, 4, 287–291CrossRefGoogle Scholar
  7. 7.
    Santesson, S.; Nilsson, S., Airborne chemistry: Acoustic levitation in chemical analysis, Anal. Bioanal. Chem. 2004, 378, 1704–1709CrossRefGoogle Scholar
  8. 8.
    Santesson, S.; Ramirez, I. B. R.; Viberg, P.; Jergil, B.; Nilsson, S., Affinity two-phase partitioning in acoustically levitated drops, Anal. Chem. 2004, 76, 303–308CrossRefGoogle Scholar
  9. 9.
    Santesson, S.; Andersson, M.; Degerman, E.; Johansson, T.; Nilsson, J.; Nilsson, S., Airborne cell analysis, Anal. Chem. 2000, 72, 3412–3418CrossRefGoogle Scholar
  10. 10.
    Santesson, S.; Degerman, E.; Johansson, T.; Nilsson, J.; Nilsson, S., Bioanalytical chemistry in levitated drops, Am. Lab. 2001, 33, 13–18Google Scholar
  11. 11.
    Azzouz, H.; Alkhafadiji, L.; Balslev, S.; Johansson, J.; Mortensen, N. A.; Nilsson, S.; Kristensen, A., Levitated droplet dye laser, Opt. Express 2006, 14, 4374–4379CrossRefGoogle Scholar
  12. 12.
    Schafer, J.; Mondia, J. P.; Sharma, R.; Lu, Z. H.; Wang, L. J., Modular microdrop generator, Rev. Sci. Instrum. 2007, 78, 066102CrossRefGoogle Scholar
  13. 13.
    Paul, W., Electromagnetic traps for charged and neutral particles, Rev. Mod. Phys. 1990, 62, 531–540CrossRefGoogle Scholar
  14. 14.
    Schafer, J.; Mondia, J. P.; Sharma, R.; Lu, Z. H.; Susha, A. S.; Rogach, A. L.; Wang, L. J., Quantum dot microdrop laser, Nano Lett. 2008, 8, 1709–1712CrossRefGoogle Scholar
  15. 15.
    Tona, M.; Kimura, M., Parallel-plate ion trap useful for optical studies of microparticles, Rev. Sci. Instrum. 2004, 75, 2276–2279CrossRefGoogle Scholar
  16. 16.
    Wang, S. Y.; Zordan, C. A.; Johnston, M. V., Chemical characterization of individual, airborne sub-10-nm particles and molecules, Anal. Chem. 2006, 78, 1750–1754CrossRefGoogle Scholar
  17. 17.
    Schlemmer, S.; Illemann, J.; Wellert, S.; Gerlich, D., Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap, J. Appl. Phys. 2001, 90, 5410–5418CrossRefGoogle Scholar
  18. 18.
    Tona, M., Study on Spherical Microlasers Levitated in an Ion Trap, Kochi University of Technology, Kochi, 2002 Google Scholar
  19. 19.
    Tona, M.; Kimura, M., Novel lasing modes observed in a levitated single dye-doped microdroplet, J. Phys. Soc. Jpn 2000, 69, 3533–3535CrossRefGoogle Scholar
  20. 20.
    Tona, M.; Kimura, M., Polarization effects in both emission spectra and microscopic images of lasing microdroplets levitated in an ion trap, J. Phys. Soc. Jpn 2002, 71, 425–428CrossRefGoogle Scholar
  21. 21.
    Tona, M.; Kimura, M., Dependence of lasing modes of microdroplets on dye concentration, J. Phys. Soc. Jpn 2003, 72, 1238–1243CrossRefGoogle Scholar
  22. 22.
    Kiraz, A.; Sennaroglu, A.; Doganay, S.; Dundar, M. A.; Kurt, A.; Kalaycioglu, H.; Demirel, A. L., Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface, Opt. Commun. 2007, 276, 145–148CrossRefGoogle Scholar
  23. 23.
    Sennaroglu, A.; Kiraz, A.; Dundar, M. A.; Kurt, A.; Demirel, A. L., Raman lasing near 630 nm from stationary glycerol-water microdroplets on a superhydrophobic surface, Opt. Lett. 2007, 32, 2197–2199CrossRefGoogle Scholar
  24. 24.
    Gjerde, K.; Kumar, R. T. R.; Andersen, K. N.; Kjelstrup-Hansen, J.; Teo, K. B. K.; Milne, W. I.; Persson, C.; Molhave, K.; Ruabahn, H. G.; Boggild, P., On the suitability of carbon nanotube forests as non-stick surfaces for nanomanipulation, Soft Matter 2008, 4, 392–399CrossRefGoogle Scholar
  25. 25.
    Kiraz, A.; Kurt, A.; Dundar, M. A.; Yuce, M. Y.; Demirel, A. L., Volume stabilization of single, dye-doped water microdroplets with femtoliter resolution, J. Opt. Soc. Am. B Opt. Phys. 2007, 24, 1824–1828CrossRefGoogle Scholar
  26. 26.
    Kiraz, A.; Yavuz, S. C.; Karadag, Y.; Kurt, A.; Sennaroglu, A.; Cankaya, H., Large spectral tuning of liquid microdroplets standing on a superhydrophobic surface using optical scattering force, Appl. Phys. Lett. 2007, 91, 231102CrossRefGoogle Scholar
  27. 27.
    Ashkin, A., Optical trapping and manipulation of neutral particles using lasers, Proc. Natl Acad. Sci. USA 1997, 94, 4853–4860CrossRefGoogle Scholar
  28. 28.
    Kaiser, T.; Roll, G.; Schweiger, G., Investigation of coated droplets in an optical trap: Raman-scattering, elastic–light-scattering, and evaporation characteristics, Appl. Opt. 1996, 35, 5918–5924CrossRefGoogle Scholar
  29. 29.
    Kitamura, N.; Kitagawa, F., Optical trapping – chemical analysis of single microparticles in solution, J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 227–247CrossRefGoogle Scholar
  30. 30.
    Hopkins, R. J.; Mitchem, L.; Ward, A. D.; Reid, J. P., Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap, Phys. Chem. Chem. Phys. 2004, 6, 4924–4927CrossRefGoogle Scholar
  31. 31.
    Moon, H. J.; Chough, Y. T.; An, K., Cylindrical microcavity laser based on the evanescent-wave-coupled gain, Phys. Rev. Lett. 2000, 85, 3161–3164CrossRefGoogle Scholar
  32. 32.
    Knight, J. C.; Cheung, G.; Jacques, F.; Birks, T. A., Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper, Opt. Lett. 1997, 22, 1129–1131CrossRefGoogle Scholar
  33. 33.
    Cai, M.; Painter, O.; Vahala, K. J., Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system, Phys. Rev. Lett. 2000, 85, 74–77CrossRefGoogle Scholar
  34. 34.
    Little, B. E.; Laine, J. P.; Haus, H. A., Analytic theory of coupling from tapered fibers and half-blocks into microsphere resonators, J. Lightwave Technol. 1999, 17, 704–715CrossRefGoogle Scholar
  35. 35.
    Hossein-Zadeh, M.; Vahala, K. J., Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium, Opt. Express 2006, 14, 10800–10810CrossRefGoogle Scholar
  36. 36.
    Ray, A. K.; Souyri, A.; Davis, E. J.; Allen, T. M., Precision of light-scattering techniques for measuring optical-parameters of microspheres, Appl. Opt. 1991, 30, 3974–3983CrossRefGoogle Scholar
  37. 37.
    Tanyeri, M.; Kennedy, I. M., Detecting single bacterial cells through optical resonances in microdroplets, Sensor Lett. 2008, 6, 326–329CrossRefGoogle Scholar
  38. 38.
    Huston, A. L.; Lin, H. B.; Eversole, J. D.; Campillo, A. J., Effect of bubble formation on microdroplet cavity quality factors, J. Opt. Soc. Am. B Opt. Phys. 1996, 13, 521–531CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kristian Mølhave
    • 1
  • Anders Kristensen
    • 1
  • Niels Asger Mortensen
    • 1
  1. 1.DTU NanotechTechnical University of DenmarkØrsteds PladsDenmark

Personalised recommendations