Skip to main content

Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection

  • Chapter
  • First Online:
Advanced Photonic Structures for Biological and Chemical Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Optical devices, such as surface plasmon resonance chips and waveguide-based Mach–Zehnder interferometers, have long been successfully used as label-free biomolecular sensors. Recently, however, there has been increased interest in developing new approaches to biomolecular detection that can improve on the limit of detection, specificity, and multiplexibility of these early devices and address emerging challenges in pathogen detection, disease diagnosis, and drug discovery. As we describe in this chapter, planar optically resonant nanophotonic devices (such as ring resonators, whispering gallery modes, and photonic crystal cavities) are one method that shows promise in significantly advancing the technology. Here we first provide a short review of these devices focusing on a handful of approaches illustrative of the state of the art. We then frame the major challenge to improving the technology as being the ability to provide simultaneously spatial localization of the electromagnetic energy and biomolecular binding events. We then introduce our “Nanoscale Optofluidic Sensor Arrays” which represents our approach to addressing this challenge. It is demonstrated how these devices serve to enable multiplexed detection while localizing the electromagnetic energy to a volume as small as a cubic wavelength. Challenges involved in the targeted immobilization of biomolecules over such a small area are discussed and our solutions presented. In general, we have tried to write this chapter with the novice in mind, providing details on the fabrication and immobilization methods that we have used and how one might adapt our approach to their designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich, R. L.; Myszka, D. G., Survey of the year 2006 commercial optical biosensor literature, J. Mol. Recognit. 2007, 20, 300–366

    Article  CAS  Google Scholar 

  2. Sander, C., Genomic medicine and the future of health care, Science 2000, 287, 1977–1978

    Article  CAS  Google Scholar 

  3. Srinivas, P. R.; Kramer, B. S.; Srivastava, S., Trends in biomarker research for cancer detection, Lancet Oncol. 2001, 2, 698–704

    Article  CAS  Google Scholar 

  4. Srinivas, P. R.; Verma, M.; Zhao, Y. M.; Srivastava, S., Proteomics for cancer biomarker discovery, Clin. Chem. 2002, 48, 1160–1169

    CAS  Google Scholar 

  5. Growdon, J. H., Biomarkers of Alzheimer disease, Arch. Neurol. 1999, 56, 281–283

    Article  CAS  Google Scholar 

  6. Ross, J. S.; Schenkein, D. P.; Kashala, O.; Linette, G. P.; Stec, J.; Symmans, W. F.; Pusztai, L.; Hortobagyi, G. N., Pharmacogenomics, Adv. Anat. Pathol. 2004, 11, 211–220

    Article  CAS  Google Scholar 

  7. Hernandez, J.; Thompson, I. M., Prostate-specific antigen: A review of the validation of the most commonly used cancer biomarker, Cancer 2004, 101, 894–904

    Article  CAS  Google Scholar 

  8. Ward, A. M.; Catto, J. W. F.; Hamdy, F. C., Prostate specific antigen: Biology, biochemistry and available commercial assays, Ann. Clin. Biochem. 2001, 38, 633–651

    Article  CAS  Google Scholar 

  9. Sidransky, D., Emerging molecular markers of cancer, Nat. Rev. Cancer 2002, 2, 210–219

    Article  CAS  Google Scholar 

  10. Wulfkuhle, J. D.; Liotta, L. A.; Petricoin, E. F., Proteomic applications for the early detection of cancer, Nat. Rev. Cancer 2003, 3, 267–275

    Article  CAS  Google Scholar 

  11. Straub, T. M.; Chandler, D. P., Towards a unified system for detecting waterborne pathogens, J. Microbiol. Methods 2003, 53, 185–197

    Article  Google Scholar 

  12. Rasooly, A.; Herold, K. E., Biosensors for the analysis of food- and waterborne pathogens and their toxins, J. AOAC Int. 2006, 89, 873–883

    CAS  Google Scholar 

  13. McBride, M. T.; Masquelier, D.; Hindson, B. J.; Makarewicz, A. J.; Brown, S.; Burris, K.; Metz, T.; Langlois, R. G.; Tsang, K. W.; Bryan, R.; Anderson, D. A.; Venkateswaran, K. S.; Milanovich, F. P.; Colston, B. W., Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis, Anal. Chem. 2003, 75, 5293–5299

    Article  CAS  Google Scholar 

  14. Stetzenbach, L. D.; Buttner, M. P.; Cruz, P., Detection and enumeration of airborne biocontaminants, Curr. Opin. Biotechnol. 2004, 15, 170–174

    Article  CAS  Google Scholar 

  15. Erickson, D.; Mandal, S.; Yang, A.; Cordovez, B., Nanobiosensors: Optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale, Microfluid. Nanofluid. 2008, 4, 33–52

    Article  CAS  Google Scholar 

  16. Seydack, M., Nanoparticle labels in immunosensing using optical detection methods, Biosensors Bioelectron. 2005, 20, 2454–2469

    Article  CAS  Google Scholar 

  17. Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M., Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nat. Biotechnol. 2005, 23, 1294–1301

    Article  CAS  Google Scholar 

  18. Li, C.; Curreli, M.; Lin, H.; Lei, B.; Ishikawa, F. N.; Datar, R.; Cote, R. J.; Thompson, M. E.; Zhou, C. W., Complementary detection of prostate-specific antigen using ln(2)O(3) nanowires and carbon nanotubes, J. Am. Chem. Soc. 2005, 127, 12484–12485

    Article  CAS  Google Scholar 

  19. Majumdar, A., Bioassays based on molecular nanomechanics, Dis. Markers 2002, 18, 167–174

    Article  CAS  Google Scholar 

  20. Ouyang, H.; Striemer, C. C.; Fauchet, P. M., Quantitative analysis of the sensitivity of porous silicon optical biosensors, Appl. Phys. Lett. 2006, 88, 163108

    Article  Google Scholar 

  21. Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Opt. Lett. 2004, 29, 1093–1095

    Article  CAS  Google Scholar 

  22. Schmidt, B.; Almeida, V.; Manolatou, C.; Preble, S.; Lipson, M., Nanocavity in a silicon waveguide for ultrasensitive nanoparticle detection, Appl. Phys. Lett. 2004, 85, 4854–4856

    Article  CAS  Google Scholar 

  23. Pollock, C.; Lipson, M., Integrated Photonics, Kluwer, Norwell, MA, 2003.

    Book  Google Scholar 

  24. Prasad, P., Nanophotonics, Wiley, Hoboken, NJ, 2004.

    Book  Google Scholar 

  25. Luff, B. J.; Wilkinson, J. S.; Piehler, J.; Hollenbach, U.; Ingenhoff, J.; Fabricius, N., Integrated optical Mach-Zehnder biosensor, J. Lightwave Technol. 1998, 16, 583–592

    Article  Google Scholar 

  26. Prieto, F.; Sepulveda, B.; Calle, A.; Llobera, A.; Dominguez, C.; Abad, A.; Montoya, A.; Lechuga, L. M., An integrated optical interferometric nanodevice based on silicon technology for biosensor applications, Nanotechnology 2003, 14, 907–912

    Article  CAS  Google Scholar 

  27. Heideman, R. G.; Lambeck, P. V., Remote opto-chemical sensing with extreme sensitivity: Design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system, Sensors Actuat. B-Chem. 1999, 61, 100–127

    Article  CAS  Google Scholar 

  28. Chao, C. Y.; Fung, W.; Guo, L. J., Polymer microring resonators for biochemical sensing applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 134–142

    Article  CAS  Google Scholar 

  29. Matsko, A. B.; Ilchenko, V. S., Optical resonators with whispering-gallery modes – Part I: Basics, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3–14

    Article  CAS  Google Scholar 

  30. Ilchenko, V. S.; Matsko, A. B., Optical resonators with whispering-gallery modes – Part II: Applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15–32

    Article  CAS  Google Scholar 

  31. Arnold, S.; Khoshsima, M.; Teraoka, I.; Holler, S.; Vollmer, F., Shift of whispering-gallery modes in microspheres by protein adsorption, Opt. Lett. 2003, 28, 272–274

    Article  CAS  Google Scholar 

  32. Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787

    Article  CAS  Google Scholar 

  33. Joannopoulos, J. D.; Meade, R. D.; Winn, J. W., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, 1995

    Google Scholar 

  34. Erickson, D.; Rockwood, T.; Emery, T.; Scherer, A.; Psaltis, D., Nanofluidic tuning of photonic crystal circuits, Opt. Lett. 2006, 31, 59–61

    Article  Google Scholar 

  35. Foresi, J. S.; Villeneuve, P. R.; Ferrera, J.; Thoen, E. R.; Steinmeyer, G.; Fan, S.; Joannopoulos, J. D.; Kimerling, L. C.; Smith, H. I.; Ippen, E. P., Photonic-bandgap microcavities in optical waveguides, Nature 1997, 390, 143–145

    Article  CAS  Google Scholar 

  36. Lee, M. R.; Fauchet, P. M., Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Opt. Express 2007, 15, 4530–4535

    Article  CAS  Google Scholar 

  37. Mandal, S.; Erickson, D., Nanoscale optofluidic sensor arrays, Opt. Express 2008, 16, 1623–1631

    Article  Google Scholar 

  38. Goddard, J.; Erickson, D.; “Bioconjugation Techniques for Microfluidic Biosensors” Analytical and Bioanalytical Chemistry 2009, 394, 469–479

    Article  CAS  Google Scholar 

  39. Almeida, V. R.; Panepucci, R. R.; Lipson, M., Nanotaper for compact mode conversion, Opt. Lett. 2003, 28, 1302–1304

    Article  CAS  Google Scholar 

  40. Elhadj, S.; Singh, G.; Saraf, R. F., Optical properties of an immobilized DNA monolayer from 255 to 700 nm, Langmuir 2004, 20, 5539–5543

    Article  CAS  Google Scholar 

  41. Barbulovic–Nad, I.; Lucente, M.; Sun, Y.; Zhang, M. J.; Wheeler, A. R.; Bussmann, M., Bio-microarray fabrication techniques - A review, Crit. Rev. Biotechnol. 2006, 26, 237–259

    Article  CAS  Google Scholar 

  42. Xu, L. P.; Robert, L.; Qi, O. Y.; Taddei, F.; Chen, Y.; Lindner, A. B.; Baigl, D., Microcontact printing of living bacteria arrays with cellular resolution, Nano Lett. 2007, 7, 2068–2072

    Article  CAS  Google Scholar 

  43. Mannini, M.; Bonacchi, D.; Zobbi, L.; Piras, F. M.; Speets, E. A.; Caneschi, A.; Cornia, A.; Magnani, A.; Ravoo, B. J.; Reinhoudt, D. N.; Sessoli, R.; Gatteschi, D., Advances in single-molecule magnet surface patterning through microcontact printing, Nano Lett. 2005, 5, 1435–1438

    Article  CAS  Google Scholar 

  44. Ilic, B.; Craighead, H. G., Topographical patterning of chemically sensitive biological materials using a polymer-based dry lift off, Biomed. Microdevices 2000, 2, 317–322

    Article  CAS  Google Scholar 

  45. Moran-Mirabal, J.; Tan, C.; Orth, R.; Williams, E.; Craighead, H.; Lin, D., Controlling microarray spot morphology with polymer liftoff arrays, Anal. Chem. 2007, 79, 1109–1114

    Article  CAS  Google Scholar 

  46. Orth, R. N.; Kameoka, J.; Zipfel, W. R.; Ilic, B.; Webb, W. W.; Clark, T. G.; Craighead, H. G., Creating biological membranes on the micron scale: Forming patterned lipid bilayers using a polymer lift-off technique, Biophys. J. 2003, 85, 3066–3073

    Article  CAS  Google Scholar 

  47. Atsuta, K.; Suzuki, H.; Takeuchi, S., A parylene lift-off process with microfluidic channels for selective protein patterning, J. Micromech. Microeng. 2007, 17, 496–500

    Article  CAS  Google Scholar 

  48. Majid, N.; Dabral, S.; McDonald, J. F., The parylene-aluminum multilayer interconnection system for wafer scale integration and wafer scale hybrid packaging, J. Electron. Mater. 1989, 18, 301–311

    Article  CAS  Google Scholar 

  49. Byun, K. M.; Yoon, S. J.; Kim, D.; Kim, S. J., Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness, J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 2007, 24, 522–529

    Article  CAS  Google Scholar 

  50. Fortin, J. B.; Lu, T. M., Ultraviolet radiation induced degradation of poly-para-xylylene (parylene) thin films, Thin Solid Films 2001, 397, 223–228

    Article  CAS  Google Scholar 

  51. Pruden, K. G.; Sinclair, K.; Beaudoin, S., Characterization of parylene-N and parylene-C photooxidation, J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 1486–1496

    Article  CAS  Google Scholar 

  52. Lee, M.; Fauchet, P. M., Two-dimensional silicon photonic crystal based biosensing platform for protein detection, Opt. Express 2007, 15, 4530–4535

    Article  CAS  Google Scholar 

  53. Le Berre, V.; Trevisiol, E.; Dagkessamanskaia, A.; Sokol, S.; Caminade, A. M.; Majoral, J. P.; Meunier, B.; Francois, J., Dendrimeric coating of glass slides for sensitive DNA microarrays analysis, Nucleic Acids Res. 2003, 31, e88

    Article  Google Scholar 

  54. Pathak, S.; Singh, A. K.; McElhanon, J. R.; Dentinger, P. M., Dendrimer-activated surfaces for high density and high activity protein chip applications, Langmuir 2004, 20, 6075–6079

    Article  CAS  Google Scholar 

  55. Benters, R.; Niemeyer, C. M.; Wohrle, D., Dendrimer-activated-solid supports for nucleic acid and protein microarrays, Chembiochem. 2001, 2, 686–694

    Article  CAS  Google Scholar 

  56. Benters, R.; Niemeyer, C. M.; Drutschmann, D.; Blohm, D.; Wohrle, D., DNA microarrays with PAMAM dendritic linker systems, Nucleic Acids Res. 2002, 30, e10

    Article  Google Scholar 

  57. Harris, J. M., Poly(Ethyelene Glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum, New York, NY, 1992, 385

    Google Scholar 

  58. Caminade, A. M.; Padie, C.; Laurent, R.; Maraval, A.; Majoral, J. P., Uses of dendrimers for DNA microarrays, Sensors 2006, 6, 901–914

    Article  CAS  Google Scholar 

  59. Hermanson, G. T., Bioconjugate Techniques, Academic, New York, NY, 1996, 785

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goddard, J., Mandal, S., Erickson, D. (2009). Optically Resonant Nanophotonic Devices for Label-Free Biomolecular Detection. In: Fan, X. (eds) Advanced Photonic Structures for Biological and Chemical Detection. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98063-8_16

Download citation

Publish with us

Policies and ethics