Deep-Probe Optical Waveguides for Chemical and Biosensors

  • Mohammed Zourob
  • Nina Skivesen
  • Robert Horvath
  • Stephan Mohr
  • Nicholas J. Goddard
Part of the Integrated Analytical Systems book series (ANASYS)


Typical evanescent wave biosensors generate an electromagnetic wave at the sensor surface that penetrates 100–200 nm into the analysed medium. This has proven to be a highly sensitive tool to monitor refractive index changes in the close vicinity of the sensor surface. The sensitivity of such sensors can be enhanced significantly to monitor interactions caused by large micron scale objects such as bacterial and mammalian cells by increasing the penetration depth of the evanescent field. Recently, different formats of deep-probe optical waveguides including reverse waveguides (RW) based on low refractive index substrates (below 1.33) and metal-clad leaky waveguides (MCLW) have been developed for various sensing applications. These sensors are designed to maximize the overlap between the optical mode and the adlayer (superstrate layer) to be sensed. Increasing the penetration depth of the evanescent field opens up new perspectives for the detection of larger biological objects as it accommodates the majority of their body within the evanescent field. RWs use substrate materials with lower refractive index than that of the monitored superstrate layer (aqueous solution). In MCLWs, a thin metal layer is inserted between the substrate and the thicker waveguide layer. These sensor designs facilitate both increasing and tuning the penetration depth of the modes into the monitored aqueous solution and thereby significantly extend the range of possible application areas of optical waveguide sensors. The developed devices have been used for a range of biosensing applications, including the detection of bacteria, mammalian cells, organophosphorous pesticides and glucose using refractive index changes, absorbance and fluorescence monitoring. Integrating deep-probe sensors with an external electrical field or ultrasonic standing waves shortens analysis time significantly and reduces non-specific binding due to enhanced diffusion of analytes to the immobilized recognition receptors, and thus improves the detection limit by a few orders of magnitude.


Waveguide Mode Total Internal Reflection Evanescent Wave Effective Refractive Index Sensor Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Harrick, N. J., Internal Reflection Spectroscopy, Wiley, New York, NY, 1967Google Scholar
  2. 2.
    Buckle, P. E.; Davies, R. J.; Kinning, T.; Yeung, D.; Edwards, P. R.; Pollard-Knight, D.; Lowe, C. R., The resonant mirror: A novel optical biosensor for direct sensing of biomelcular interactions. Part II: Applications, Biosens. Bioelectron. 1993, 8, 355–363CrossRefGoogle Scholar
  3. 3.
    Cush, R.; Cronin, J. M.; Stewart, W. J.; Maule, C. H.; Molloy, J. O.; Goddard, N. J., The resonant mirror: A novel optical biosensor for direct sensing of biomolecular interactions. Part 1: Principle of operation and associated instrumentation, Biosens. Bioelectron. 1993, 8, 347–354.CrossRefGoogle Scholar
  4. 4.
    Stamm, C.; Lukosz, W., Integrated optical difference interferometer as refractometer and chemical sensor, Sens. Actuators B 1993, 11, 177–181CrossRefGoogle Scholar
  5. 5.
    Huber, W.; Barner, R.; Fattinger, C.; Hubscher, J.; Koller, H.; Muller, F.; Schlatter, D.; Lukosz, W., Direct optical immunosensing (sensitivity and selectivity), Sens. Actuators B 1992, 6, 122–126CrossRefGoogle Scholar
  6. 6.
    Nellen, Ph.; Tiefenthaler, K.; Lukosz, W., Integrated optical input grating couplers as biochemical sensors, Sens. Actuators 1988, 15, 285–295CrossRefGoogle Scholar
  7. 7.
    Ramsden, J. J., Review of new experimental – techniques for investigating random sequential adsorption, J. Stat. Phys. 1993, 73, 853–877CrossRefGoogle Scholar
  8. 8.
    Lukosz, W.; Tiefenthaler, K., Sensitivity of integrated optical grating and prism couplers as (bio) chemical sensors, Sens. Actuators B 1988, 15, 273–284CrossRefGoogle Scholar
  9. 9.
    Horvath, R.; Lindvold, L. R.; Larsen, N. B., Reverse-symmetry waveguides: Theory and fabrication, Appl. Phys. B 2002, 74, 383–393CrossRefGoogle Scholar
  10. 10.
    Tien, P. K., Integrated optics and new wave phenomena, Rev. Mod. Phys. 1977, 49, 361–420CrossRefGoogle Scholar
  11. 11.
    Goddard, N. J.; Pollard-Knight, D.; Maule, C., Real-time biomolecular interaction analysis using the resonant mirror sensor, Analyst 1994, 119, 583–588CrossRefGoogle Scholar
  12. 12.
    Horvath, R.; Pedersen, H. C.; Cuisinier, F. J. G., Guided wave sensing of polyelectrolyte multilayers, Appl. Phys. Lett. 2006, 88, 111102–111104CrossRefGoogle Scholar
  13. 13.
    Goddard, N. J.; Singh, K.; Bounaira, A. F.; Holmes, R. J.; Baldock, S. J.; Pickering, L. W.; Fielden, P. R.; Snook, R. D., Anti-resonant reflecting optical waveguides (ARROWS) as optimal optical detectors for ?-TAS applications. In Micro Total Analysis Systems ?-TAS/Proceedings; 1998, 97–100Google Scholar
  14. 14.
    Goddard, N. J.; Hulme, J.; Malins, C.; Singh, K.; Fielden, P. R., Asymmetric anti-resonant reflecting optical waveguides (ARROW) as chemical sensors, Analyst 2002, 127, 378–382CrossRefGoogle Scholar
  15. 15.
    Horvath, R.; Pedersen, H. C.; Larsen, N. B., Demonstration of reverse symmetry waveguide sensing in aqueous solutions, Appl. Phys. Lett. 2002, 81, 2166–2168CrossRefGoogle Scholar
  16. 16.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Monitoring of living cell attachment and spreading using reverse symmetry waveguide sensing, Appl. Phys. Lett. 2005,86, 071101Google Scholar
  17. 17.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Svanberg, C.; Larsen, N. B., Fabrication of reverse symmetry polymer waveguide sensor chips on nanoporous substrates using dip-floating, J. Micromech. Microeng. 2005, 15, 1260–1264CrossRefGoogle Scholar
  18. 18.
    Horvath, R.; Skivesen, N.; Larsen, N. B.; Pedersen, H. C., Reverse symmetry waveguide for optical biosensing, In Frontiers in Chemical Sensors. Novel Principles and Techniques; Orellana, G.; Moreno-Bondi, M. C., Eds.; Springer Series on Chemical Sensors and Biosensors; Springer, Berlin, 2005, Vol. 3, 279–301CrossRefGoogle Scholar
  19. 19.
    Zourob, M.; Mohr, S.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Small-volume refractive index and fluorescence sensor for micro total analytical system (?-TAS) applications, Sens. Actuators B 2003, 94, 304–312CrossRefGoogle Scholar
  20. 20.
    Zourob, M.; Mohr, S.; Fielden, P. R.; Goddard, N. J., The development of a metal clad leaky waveguide sensor for the detection of particles, Sens. Actuators B 2003, 90, 296–307CrossRefGoogle Scholar
  21. 21.
    Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., An integrated metal clad leaky waveguide sensor for detection of bacteria, Anal. Chem. 2005, 77, 232–242CrossRefGoogle Scholar
  22. 22.
    Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., An integrated optical leaky waveguide sensor with electrically induced concentration system for the detection of bacteria, Lab Chip 2005, 5, 1360–1365CrossRefGoogle Scholar
  23. 23.
    Hawkes, J. J.; Coakley, W. T.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Optical leaky waveguide sensor for detection of bacteria with ultrasound attractor force, Anal. Chem. 2005, 77, 6163–6168CrossRefGoogle Scholar
  24. 24.
    Zourob, M.; Mohr, S.; Treves-Brown, B. J.; Fielden, P. R.; McDonnell, M. B.; Goddard, N. J., Bacteria detection using disposable optical leaky waveguide sensors, Biosens. Bioelectron. 2005, 21, 293–302CrossRefGoogle Scholar
  25. 25.
    Skivesen, N.; Horvath, R.; Pedersen, H. C., Optimization of metal-clad waveguide sensors, Sens. Actuators B 2005, 106, 668–676CrossRefGoogle Scholar
  26. 26.
    Skivesen, N.; Horvath, R.; Pedersen, H. C., Peak-type and dip-type metal-clad waveguide sensing, Opt. Lett. 2005, 30, 1659–1661CrossRefGoogle Scholar
  27. 27.
    Skivesen, N.; Horvath, R.; Pedersen, H. C.; Thinggaard, S.; Larsen, N. B., Deep-probe metal-clad waveguide, Biosens. Bioelectron. 2007, 22, 1282–1288CrossRefGoogle Scholar
  28. 28.
    Born, M.; Wolf, E., Principles of Optics, 7th edn; Cambridge University Press, Cambridge, 1999 Google Scholar
  29. 29.
    Zourob, M.; Elwary, S.; Turner A. A. F., Principles of Bacterial Detection; Biosensors, Recognition Receptors and Microsystems; Springer science + business media, ISBN: 978–0–387–75112–2, 2008 Google Scholar
  30. 30.
    Tiefenthaler, K.; Lukosz, W., Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B 1989, 6, 209–220CrossRefGoogle Scholar
  31. 31.
    Horvath, R.; Pedersen, H. C.; Skivesen, N.; Selmeczi, D.; Larsen, N. B., Optical waveguide sensor for on-line monitoring of bacteria, Opt. Lett. 2003, 28, 1233–1235CrossRefGoogle Scholar
  32. 32.
    Horvath, R.; Lindvold, L. R.; Larsen, N. B., Fabrication of all-polymer freestanding waveguides, J. Micromech. Microeng. 2003, 13, 419–424CrossRefGoogle Scholar
  33. 33.
    Skivesen, N.; Horvath, R.; Pedersen, H. C., Multimode reverse-symmetry waveguide sensor for broad-range refractometry, Opt. Lett. 2003, 28, 2473–2475CrossRefGoogle Scholar
  34. 34.
    Horvath, R.; Cottier, K.; Pedersen, H. C.; Ramsden, J. J., Multidepth screening of living cells using optical waveguides, Biosens. Bioelectron. 2008, 24, 799–804CrossRefGoogle Scholar
  35. 35.
    Horvath, R.; Skivesen, N.; Pedersen, H. C., Measurement of guided lightmode intensity: An alternative waveguide sensing principle, Appl. Phys. Lett. 2004, 84, 4044–4046CrossRefGoogle Scholar
  36. 36.
    Horvath, R.; Voros, J.; Graf, R.; Fricsovszky, G. Textor, M.; Lindvold, L. R.; Papp, E., Effect of patterns and inhomogeneities on the surface of optical waveguides, Appl. Phys. B 2001, 72, 441CrossRefGoogle Scholar
  37. 37.
    Horvath, R.; Cottier, K., Imageless microscopy of surface patterns using optical waveguides, Appl. Phys. B 2008, 91, 319–327CrossRefGoogle Scholar
  38. 38.
    Rohrbach, A., Observing secretory granules with a multi-angle evanescent wave microscope, Biophys. J. 2000, 78, 2641–2654CrossRefGoogle Scholar
  39. 39.
    Perkins, E.; Squirrell, D., Development of instrumentation to allow the detection of microorganisms using light scattering in combination with surface plasmon resonance, Biosens. Bioelectron. 2000, 14, 853–859CrossRefGoogle Scholar
  40. 40.
    Lenney, J. P.; Goddard, N. J.; Morey, J. C.; Snook, R. D.; Fielden, P. R., An electro-osmotic flow system with integrated planar optical waveguide sensing, Sens. Actuators B 1997, 39, 212–217CrossRefGoogle Scholar
  41. 41.
    Jakeway, S. C.; de Mello, A. J., Chip-based refractive index detection using a single point evanescent wave probe, Analyst 2001, 9, 1505–1510CrossRefGoogle Scholar
  42. 42.
    Wang, S.-L.; Huang, X.-J.; Fang, Z.-L.; Dasgupta, P. K., A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes, Anal. Chem. 2001, 73 4545–4549CrossRefGoogle Scholar
  43. 43.
    Salamon, Z.; Brown, M. I.; Tollin, G., Plasmon resonance spectroscopy: Probing molecular interactions within membranes, TIBS 1999, 24, 213–219Google Scholar
  44. 44.
    Salamon, Z.; Tollin, G., Graphical analysis of mass and anisotropy changes observed by plasmon-waveguide resonance spectroscopy can provide useful insights into membrane protein function, Biophys. J. 2004, 86, 2508–2516CrossRefGoogle Scholar
  45. 45.
    Zdzislaw, S.; Gordon, T., Optical anisotropy in lipid bilayer membranes: Coupled plasmon-waveguide resonance measurements of molecular orientation, polarizability, and shape, Biophys. J. 2001, 80, 1557–1567Google Scholar
  46. 46.
    Zdzislaw, S.; Goran, L.; Gordon, T., Plasmon-waveguide resonance and impedance spectroscopy studies of the interaction between penetratin and supported lipid bilayer membranes, Biophys. J. 2003, 84, 1796–1807CrossRefGoogle Scholar
  47. 47.
    Tollin, G.; Salamon, Z.; Cowell, S. M.; Hruby, V. J., Plasmon-waveguide resonance spectroscopy: A new tool for investigating signal transduction by G-protein coupled receptors, Life Sci. 2003, 73, 3307–3311CrossRefGoogle Scholar
  48. 48.
    Tollin, G.; Salamon, Z.; Hruby, V. J., Techniques: Plasmon-waveguide resonance (PWR) spectroscopy as a tool to study ligand-GPCR interactions, Trends Pharmacol. Sci. 2003, 24, 655–659CrossRefGoogle Scholar
  49. 49.
    Alves, I. D.; Salamon, Z.; Varga, E.; Yamamura, H. I.; Tollin, G.; Hruby, V. J., Direct observation of G-protein binding to the human ?-opioid receptor using plasmon-waveguide resonance spectroscopy, J. Biol. Chem. 2003, 278, 48890–48897CrossRefGoogle Scholar
  50. 50.
    Alves, I. D.; Cowell, S. M.; Salamon, Z.; Devanathan, S.; Tollin, G.; Hruby, V. J., Different structural states of the proteolipid membrane are produced by ligand binding to the human ?-opioid receptor as shown by plasmon-waveguide resonance spectroscopy, Mol. Pharmacol. 2004, 65, 1248–1257CrossRefGoogle Scholar
  51. 51.
    Alves, I. D.; Ciano, K. A.; Boguslavski, V.; Varga, E.; Salamon, Z.; Yamamura, H. I.; Hruby, V. J.; Tollin, G., Selectivity, cooperativity, and reciprocity in the interactions between the ?-opioid receptor, its ligands, and G-proteins, J. Biol. Chem. 2004, 279, 44673–44682CrossRefGoogle Scholar
  52. 52.
    Zourob, M.; Goddard, N. J., Metal clad leaky waveguides for chemical and biosensing applications, Biosens. Bioelectron. 2005, 20, 1718–1727CrossRefGoogle Scholar
  53. 53.
    Zourob, M.; Simonian, A.; Wild, J.; Mohr, S.; Fan, X.; Abdulhalim, I.; Goddard, N. J., Optical leaky waveguide biosensors for the detection of organophosphorus pesticides, Analyst 2007, 132, 114–120CrossRefGoogle Scholar
  54. 54.
    Hulme, J., Optical Waveguide Biosensors, PhD thesis, UMIST, Manchester, UK, 2002 Google Scholar
  55. 55.
    Rainina, E.; Simonian, A.; fremenco, A.; Varfolomeyev, S.; Wild, J., The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins, Biosens. Bioelectron. 1996, 11, 991–1000CrossRefGoogle Scholar
  56. 56.
    Mulchandani, A.; Chen, W.; Mulchandani, P.; Wang, J.; Rogers, K. R., TITEL, Biosensors for direct determination of organophosphate pesticides, Biosens. Bioelectron. 2001, 16, 225–230CrossRefGoogle Scholar
  57. 57.
    Mayes, A. G.; Blyth, J.; Millington, R. B.; Lowe, C. R., A holographic sensor based on a rationally designed synthetic polymer, J. Mol. Recognit. 1998, 11, 168–174CrossRefGoogle Scholar
  58. 58.
    Marshall, A. J.; Young, D. S.; Blyth, J.; Kabilan, S.; Lowe, C. R., Metabolite-sensitive holographic biosensors, Anal. Chem. 2004, 76, 1518–1523CrossRefGoogle Scholar
  59. 59.
    Marshall, A. J.; Blyth, J.; Davidson, C. A. B.; Lowe, C. R., pH-Sensitive holographic sensors, Anal. Chem. 2003, 75, 4423–4431CrossRefGoogle Scholar
  60. 60.
    Malins, C., Glever, H. G., Keyes, T. E., Vos, J. G., Dressick, W. J., Mac- Craith, B. D., Sol-gel immobilised ruthenium(II) polypyridyl complexes as chemical transducers for optical pH sensing, Sens. Actuators B 2000, 67, 89–95CrossRefGoogle Scholar
  61. 61.
    McDonagh, C.; Sheridan, F.; Butler, T.; McCraith, B. D., Characterization of sol-gel-derived silica films, J. Non-Cryst. Solids 1996, 194, 72–77CrossRefGoogle Scholar
  62. 62.
    Marquette, C. A.; Blum, L. J., Luminol electrochemiluminescence-based fibre optic biosensors for flow injection analysis of glucose and lactate in natural samples, Anal. Chim. Acta 1999, 381, 1–10CrossRefGoogle Scholar
  63. 63.
    Watts, H.; Lowe, C.; Pollard-Knight, D., Optical biosensor for monitoring microbial cells, Anal. Chem. 1994, 66, 2465–2470CrossRefGoogle Scholar
  64. 64.
    DeFlaun, M. F.; Condee, C. W., Electrokinetic transport of bacteria, J. Hazard. Mater. 1997, 55, 263–277CrossRefGoogle Scholar
  65. 65.
    Hawkes, J. J.; Long, M. J.; Coakley W. T.; McDonnell, M. B. Ultrasonic deposition of cells on a surface, Biosens. Bioelectron. 2004, 19, 1021–1028CrossRefGoogle Scholar
  66. 66.
    Spengler, J. F.; Jekel, M.; Christensen, K. T.; Adrian, R. J.; Hawkes, J. J.; Coakley, W. T., Observation of yeast cell movement and aggregation in a small-scale MHz-ultrasonic standing wave field, Bioseparation 2000, 9, 329–341CrossRefGoogle Scholar
  67. 67.
    Salamon, Z.; Macleod, H. A.; Tollin, G., Coupled plasmon-waveguide resonators: A new spectroscopic tool for probing proteolipid film structure and properties, Biophys. J. 1997, 73, 2791–2797CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mohammed Zourob
    • 1
  • Nina Skivesen
  • Robert Horvath
  • Stephan Mohr
  • Nicholas J. Goddard

Personalised recommendations