Optical Micro/Nanofibers for Sensing Applications

  • M. Sumetsky
Part of the Integrated Analytical Systems book series (ANASYS)


This chapter reviews the applications of optical micro/nanofibers (MNFs) and MNF-based photonic devices for sensing of the ambient medium. An optical MNF is usually fabricated by drawing a glass or a polymer optical fiber and has a diameter between ∼100 nm and several μm. The MNF sensors can be either based or not based on the interaction of the ambient medium with the evanescent part of the mode propagating along the MNF. The simplest MNF evanescent sensor is an MNF, which detects changes caused by proximity of chemical/biological species and microparticles at the MNF surface. The advantage of the MNF evanescent sensor compared with other evanescent sensors is that the MNF is more open to the environment and therefore more sensitive to ambient changes. This chapter starts with a brief review of the theory of uniform MNFs, MNF tapers, and MNF-based or MNF-supported photonic resonators (MNF loop resonator, MNF/microsphere resonator, MNF/microdisk resonator, MNF coil resonator, and MNF/microcylinder resonator), which are used as optical sensors. The description of the theory is followed by the review of applications of these devices for sensing. First, the simplest MNF sensors based on straight MNF are considered. They include microfluidic sensor, hydrogen sensor, molecular absorption sensor, humidity and gas sensor, optical fiber surface sensor, and atomic fluorescence sensor. Then the applications of looped and coiled MNFs as a direct-contact gas temperature sensor, an infrared radiation sensor, and a microfluidic sensor are reviewed. Finally, more complex sensors, which consist of MNFs coupled to microspheres, microdisks, microcylinders, and microcapillaries, are considered as refractive index sensors, nanolayer sensors, surface sensors, and also as individual atom and molecule sensors.


Transmission Power Transmission Spectrum Ambient Medium Whisper Gallery Mode Evanescent Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kapany, N. S., High-resolution fibre optics using sub-micron multiple fibres, Nature 1959, 184, 881–883CrossRefGoogle Scholar
  2. 2.
    Kapany, N. S.; Burke, J. J., Fiber optics. IX. Waveguide effects, J. Opt. Soc. Am. 1961, 51, 1067–1078CrossRefGoogle Scholar
  3. 3.
    Mackenzie, H. S.; Payne, F. P., Evanescent field amplification in a tapered single-mode fibre, Electron. Lett. 1990, 26, 130–132CrossRefGoogle Scholar
  4. 4.
    Pendock, G. J.; MacKenzie, H. S.; Payne, F. P., Dye lasers using tapered optical fibers, Appl. Opt. 1993, 32, 5236–5242CrossRefGoogle Scholar
  5. 5.
    Knight, J. C.; Cheung, G.; Jacques, F.; Birks, T. A., Phase-matched excitation of whispering-gallery mode resonances by a fiber taper, Opt. Lett. 1997, 22, 1129–1131CrossRefGoogle Scholar
  6. 6.
    Birks, T. A.; Wadsworth, W. J.; Russell, P. St. J., Supercontinuum generation in tapered fibers, Opt. Lett. 2000, 25, 1415–1417CrossRefGoogle Scholar
  7. 7.
    Tong, L.; Gattass, R. R.; Ashcom, J. B.; He, S.; Lou, J.; Shen, M.; Maxwell, I.; Mazur, E., Subwavelength-diameter silica wires for low-loss optical wave guiding, Nature 2003, 426, 816–819CrossRefGoogle Scholar
  8. 8.
    Sumetsky, M., Optical fiber microcoil resonators, Opt. Express 2004, 12, 2303–2316CrossRefGoogle Scholar
  9. 9.
    Leon-Saval, S. G.; Birks, T. A.; Wadsworth, W. J.; Russell, P. S. J.; Mason, M. W., Supercontinuum generation in submicron fibre waveguides, Opt. Express 2004, 12, 2864–2869CrossRefGoogle Scholar
  10. 10.
    Brambilla, G.; Finazzi, V.; Richardson, D. J.; Ultra-low-loss optical fiber nanotapers, Opt. Express 2004, 12, 2258–2263CrossRefGoogle Scholar
  11. 11.
    Sumetsky, M., How thin can a microfiber be and still guide light?, Opt. Lett. 2006, 31, 870–872CrossRefGoogle Scholar
  12. 12.
    Sumetsky, M., How thin can a microfiber be and still guide light? Errata, Opt. Lett. 2006, 31, 3577–3578CrossRefGoogle Scholar
  13. 13.
    Sumetsky, M., Optics of tunneling from adiabatic nanotapers, Opt. Lett. 2006, 31, 3420–3422CrossRefGoogle Scholar
  14. 14.
    Novotny, L.; Hecht, B., Principles of Nano-Optics, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  15. 15.
    Villatoro, J.; Monzón-Hernández, D., Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers, Opt. Express 2005, 13, 5087–5092CrossRefGoogle Scholar
  16. 16.
    Polynkin, P.; Polynkin, A.; Peyghambarian, N.; Mansuripur, M., Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels, Opt. Lett. 2005, 30, 1273–1275CrossRefGoogle Scholar
  17. 17.
    Birks, T. A.; Knight, J. C.; Dimmick, T. E., High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment, IEEE Photon. Technol. Lett. 2000, 12, 182–184CrossRefGoogle Scholar
  18. 18.
    Sumetsky, M.; Dulashko, Y., Sensing an optical fiber surface by a microfiber with angstrom accuracy, In Optical Fiber Communication conference, Anaheim, 2006Google Scholar
  19. 19.
    Warken, F.; Vetsch, E.; Meschede, D.; Sokolowski, M.; Rauschenbeutel, A., Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers, Opt. Express 2007, 15, 11952–11958CrossRefGoogle Scholar
  20. 20.
    Balykin, V. I.; Hakuta, K.; Kien, F. L.; Liang, J. Q.; Morinagal, M., Atom trapping and guiding with a subwavelength-diameter optical fiber, Phys. Rev. 2004, A 70, 011401Google Scholar
  21. 21.
    Nayak, K. P.; Melentiev, P. N.; Morinaga, M.; Kien, F. L.; Balykin, V. I.; Hakuta, K., Optical nanofiber as an efficient tool for manipulating and probing atomic Fluorescence, Opt. Express 2007, 15, 5431–5438CrossRefGoogle Scholar
  22. 22.
    Gu, F.; Zhang, L.; Yin, X.; Tong, L., Polymer single-nanowire optical sensors, Nano Lett. 2008, 8, 2757–2761Google Scholar
  23. 23.
    Sumetsky, M.; Dulashko, Y.; Fini, J. M.; Hale, A.; DiGiovanni, D. J., The microfiber loop resonator: Theory, experiment, and application, IEEE J. Lightwave Technol. 2006, 24, 242–250CrossRefGoogle Scholar
  24. 24.
    Jiang, X.; Tong, L.; Vienne, G.; Guo, X.; Tsao, A.; Yang, Q.; Yang, D., Demonstration of optical microfiber knot resonators, Appl. Phys. Lett. 2006, 88, 223501CrossRefGoogle Scholar
  25. 25.
    Vienne, G.; Li, Y.; Tong, L., Microfiber resonator in polymer matrix, IEICE Trans. Electron. 2007, E90, 415–421CrossRefGoogle Scholar
  26. 26.
    Sumetsky, M., Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation, Opt. Express 2005, 13, 4331–4340CrossRefGoogle Scholar
  27. 27.
    Sumetsky, M., Basic elements for microfiber photonics: micro/nanofibers and microfiber coil resonators, IEEE J. Lightwave Technol. 2008, 26, 21–27CrossRefGoogle Scholar
  28. 28.
    Xu, F.; Horak, P.; Brambilla, G., Conical and biconical ultra-high-Q optical-fiber nanowire microcoil resonator, Appl. Opt. 2007, 46, 570–573CrossRefGoogle Scholar
  29. 29.
    Xu, F.; Horak, P.; Brambilla, G., Optimized design of microcoil resonators, J. Lightwave Technol. 2007, 25, 1561–1567CrossRefGoogle Scholar
  30. 30.
    Fei, X.; Brambilla, G., Manufacture of 3-D microfiber coil resonators, IEEE Photon. Technol. Lett., 2007, 19, 1481–1483CrossRefGoogle Scholar
  31. 31.
    Xu, F.; Brambilla, G., Embedding optical microfiber coil resonators in Teflon, Opt. Lett. 2007, 32, 2164–2166CrossRefGoogle Scholar
  32. 32.
    Xu, F.; Horak, P.; Brambilla, G., Optical microfiber coil resonator refractometric sensor, Opt. Express 2007, 15, 7888–7893CrossRefGoogle Scholar
  33. 33.
    Xu, F.; Brambilla, G., Demonstration of a refractometric sensor based on optical microfiber coil resonator, Appl. Phys. Lett. 2008, 92, 101126CrossRefGoogle Scholar
  34. 34.
    Vahala, K. J., Optical microcavities, Nature 2003, 424, 839–846CrossRefGoogle Scholar
  35. 35.
    Vollmer, F.; Braun, D.; Libchaber, A., Protein detection by optical shift of a resonant microcavity, Appl. Phys. Lett. 2002, 80, 4057–4059CrossRefGoogle Scholar
  36. 36.
    Noto, M.; Vollmer, F.; Keng, D.; Teraoka, I.; Arnold, S., Nanolayer characterization through wavelength multiplexing of a microsphere resonator, Opt. Lett. 2005, 30, 510–512CrossRefGoogle Scholar
  37. 37.
    Arnold, S.; Khoshsima, M.; Teraoka, I.; Holler, S.; Vollmer, F., Shift of whispering-gallery modes in microspheres by protein adsorption, Opt. Lett. 2003, 28, 272–274CrossRefGoogle Scholar
  38. 38.
    Vollmer, F.; Arnold, S.; Braun, D.; Teraoka, I.; Libchaber, A., Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities, Biophys. J. 2003, 85 1974–1979CrossRefGoogle Scholar
  39. 39.
    Teraoka, I.; Arnold, S.; Vollmer, F., Perturbation approach to resonance shifts of whispering-gallery modes in a dielectric microsphere as a probe of a surrounding medium, J. Opt. Soc. Am. B 2003, 20, 1937–1946CrossRefGoogle Scholar
  40. 40.
    Hanumegowda, N. M.; Stica, C. J.; Patel, B. C.; White, I. M.; Fan, X., Refractometric sensors based on microsphere resonators, Appl. Phys. Lett. 2005, 87, 201107CrossRefGoogle Scholar
  41. 41.
    White, I. M.; Hanumegowda, N. M.; Fan, X., Subfemtomole detection of small molecules with microsphere sensors, Opt. Lett. 2005, 30, 3189–3191CrossRefGoogle Scholar
  42. 42.
    Sumetsky, M.; Dulashko, Y.; DiGiovanni, D. J., Optical surface microscopy with a moving microsphere, In Nanophotonics Topical Meeting, OSA, Uncasville, 2006Google Scholar
  43. 43.
    Ren, H.; Vollmer, F.; Arnold, S.; Libchaber, A., High-Q microsphere biosensor - analysis for adsorption of rodlike bacteria, Opt. Express 2007, 15, 17410–17423CrossRefGoogle Scholar
  44. 44.
    Matsko, A. B.; Ilchenko, V. S., Optical resonators with whispering-gallery modes-part I: basics, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 3–14CrossRefGoogle Scholar
  45. 45.
    Ilchenko, V.S.; Matsko, A.B., Optical resonators with whispering-gallery modes-part II: applications, IEEE J. Sel. Top. Quantum Electron. 2006, 12, 15–32CrossRefGoogle Scholar
  46. 46.
    Armani, D. K.; Kippenberg, T. J.; Spillane, S. M.; Vahala, K. J., Ultra-high-Q toroid microcavity on a chip, Nature 2003, 421, 925–928CrossRefGoogle Scholar
  47. 47.
    Armani, A. M.; Vahala, K. J., Heavy water detection using ultra-high-Q microcavities, Opt. Lett. 2006, 31, 1896–1898CrossRefGoogle Scholar
  48. 48.
    Aoki, T.; Dayan, B.; Wilcut, E.; Bowen, W. P.; Parkins, A. S.; Kippenberg, T. J.; Vahala, K. J.; Kimble, H. J., Observation of strong coupling between one atom and a monolithic microresonator, Nature 2006, 443, 671–674CrossRefGoogle Scholar
  49. 49.
    Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787CrossRefGoogle Scholar
  50. 50.
    White, I. M.; Oveys, H.; Fan, X., Liquid core optical ring resonator sensors, Opt. Lett. 2006, 31, 1319–1321CrossRefGoogle Scholar
  51. 51.
    White, I. M.; Oveys, H.; Fan, X.; Smith, T. L.; Zhang, J., Integrated multiplexed biosensors based on liquid core optical ring resonators and antiresonant reflecting optical waveguides, Appl. Phys. Lett. 2006, 89, 191106CrossRefGoogle Scholar
  52. 52.
    Fan, X.; White, I. M.; Zhu, H.; Suter, J. D.; Oveys, H., Overview of novel integrated optical ring resonator bio/chemical sensors, Proc. SPIE 2007, 6452, 1–20Google Scholar
  53. 53.
    Zhu, H.; White, I. M.; Suter, J. D.; Dale, P. S.; Fan, X., Analysis of biomolecule detection with optofluidic ring resonator sensors, Opt. Express 2007, 15, 9139–9146CrossRefGoogle Scholar
  54. 54.
    Sumetsky, M.; Windeler, R. S.; Dulashko, Y.; Fan, X., Optical liquid ring resonator sensor, Opt. Express 2007, 15, 14376–14381CrossRefGoogle Scholar
  55. 55.
    Paul, P. H.; Kychakoff, G., Fiber-optic evanescent field absorption sensor, Appl. Phys. Lett. 1987, 51, 12–14CrossRefGoogle Scholar
  56. 56.
    Piraud, C.; Mwarania, E. K.; Yao, J.; O'Dwyer, K.; Schiffrin, D. J.; Wilkinson, J. S., Optoelectrochemical transduction on planar optical waveguides, J. Lightwave Technol. 1992, 10, 693–699CrossRefGoogle Scholar
  57. 57.
    Ruddy, V.; MacCraith, B. D.; Murphy, J. A., Evanescent wave absorption spectroscopy using multimode fibers, J. Appl. Phys. 1990, 67, 6070–6074CrossRefGoogle Scholar
  58. 58.
    James, S. W.; Tatam, R. P., Fibre optic sensors with nano-structured coatings, J. Opt. A: Pure Appl. Opt. 2006, 8, S430–S444CrossRefGoogle Scholar
  59. 59.
    Snyder, A. W.; Love, J. D., Optical Waveguide Theory, Kluwer Academic Publishers, Norwell, 2000Google Scholar
  60. 60.
    Tong, L.; Lou, J.; Mazur, E.; Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides, Opt. Express 2004, 12, 1025–1035CrossRefGoogle Scholar
  61. 61.
    Le Kien, F.; Liang, J. Q.; Hakuta, K.; Balykin, V. I., Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber, Opt. Commun. 2004, 242, 445–456CrossRefGoogle Scholar
  62. 62.
    Tong, L. M.; Hu, L. L.; Zhang, J. J.; Qiu, J. R.; Yang, Q.; Lou, J. Y.; Shen, Y. H.; He, J. L.; Ye, Z. Z., Photonic nanowires directly drawn from bulk glasses, Opt. Express 2006, 14, 82–87CrossRefGoogle Scholar
  63. 63.
    Sumetsky, M.; Dulashko, Y.; Hale, A., Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer, Opt. Express 2004, 12, 3521–3531CrossRefGoogle Scholar
  64. 64.
    Sumetsky, M.; Dulashko, Y.; Domachuk, P.; Eggleton, B. J., Thinnest optical waveguide: Experimental test, Opt. Lett. 2007, 32, 754–756CrossRefGoogle Scholar
  65. 65.
    Chen, H. W.; Li, Y. T.; Pan, C. L.; Kuo, J. L.; Lu, J. Y.; Chen, L. J.; Sun, C. K., Investigation on spectral loss characteristics of subwavelength terahertz fibers, Opt. Lett. 2007, 32, 1017–1019CrossRefGoogle Scholar
  66. 66.
    Heebner, J.; Grover, R.; Ibrahim, T., Optical Micro-Resonators: Theory, Fabrication, and Applications, Springer-Verlag, New York, 2007.Google Scholar
  67. 67.
    Sumetsky, M., Optimization of optical ring resonator devices for sensing applications, Opt. Lett. 2007, 32, 2577–2579CrossRefGoogle Scholar
  68. 68.
    Sumetsky, M., Optimization of resonant optical sensors, Opt. Express 2007, 15, 17449–17457CrossRefGoogle Scholar
  69. 69.
    Sumetsky, M.; Dulashko, Y.; Windeler, R. S., Temperature and pressure compensated microfluidic optical Sensor, In Conference on lasers and electro-optics/quantum electronics and laser science conference and photonic applications systems technologies, OSA Technical Digest (CD), Optical Society of America, 2008, paper CMJ6Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Sumetsky
    • 1
  1. 1.OFS LaboratoriesSomersetUSA

Personalised recommendations