Advertisement

Ultra-Sensitive Biochemical Optical Detection Using Distributed Feedback Nanolasers

  • Jacob Scheuer
Chapter
Part of the Integrated Analytical Systems book series (ANASYS)

Abstract

Circular resonators are promising candidates for a wide range of applications, ranging from research involving highly confined fields and strong photon-atom interactions such as cavity QED to optical communication systems and biochemical sensing. For sensing applications, circular cavities exhibit a great potential for achieving ultra-high sensitivity while retaining compact dimensions. The main characteristics of circular resonators are the Q-factor, the free spectral range (FSR), and the modal volume, where the last two are primarily determined by the resonator radius. The total-internal-reflection mechanism employed in “conventional” resonators couples between these characteristics and limits the ability to realize compact devices exhibiting large FSR, small modal volume, and high Q. Recently, a new class of annular resonator, based on a single defect surrounded by radial Bragg reflectors, has been proposed and analyzed. The radial Bragg confinement decouples the modal volume and the Q and paves a new way for the realization of compact and low loss resonators. Such properties as well as the unique mode profile of these circular Bragg nanolasers make this class of devices an excellent tool for ultra-sensitive biochemical detection as well as for studies in nonlinear optics.

Keywords

Pump Power Bragg Reflector Total Internal Reflection Resonance Wavelength Mode Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by the Israeli Ministry of Science and Technology.

References

  1. 1.
    Madsen, C. K.; Zhao, J. H., Optical Filter Design and Analysis: A Signal Processing Approach, Wiley-Interscience Publications, New York, NY, 1999, and references therein.CrossRefGoogle Scholar
  2. 2.
    Little, B. E.; Chu, T.; Haus, H. A., Second-order filtering and sensing with partially coupled traveling waves in a single resonator, Opt. Lett. 1998, 23, 1570–1572CrossRefGoogle Scholar
  3. 3.
    Yariv, A., Critical coupling and its control in optical waveguide-ring resonator systems, IEEE Photonics Technol. Lett. 2002, 14, 483–485CrossRefGoogle Scholar
  4. 4.
    Heebner, J. E.; Boyd, R. W., Slow and fast light in resonator-coupled waveguides, J. Mod. Opt. 2002, 49, 2629–2636CrossRefGoogle Scholar
  5. 5.
    Chao, C. Y.; Gao, L. J., Biochemical sensors based on polymer microrings with sharp asymmetrical resonance, Appl. Phys. Lett. 2003, 83, 1527–1529CrossRefGoogle Scholar
  6. 6.
    Matsko, A. B.; Maleki, L.; Savchenkov, A. A.; Ilchenko, V. S., Whispering gallery mode based optoelectronic microwave oscillator, J. Mod. Opt. 2003, 50, 2523–2542Google Scholar
  7. 7.
    Vahala, K.J., Optical microcavities, Nature 2003, 424, 839–846CrossRefGoogle Scholar
  8. 8.
    Boyd, R. W., et al, Nanofabrication of optical structures and devices for photonics and biophotonics, J. Mod. Opt. 2003, 50, 2543CrossRefGoogle Scholar
  9. 9.
    Loncar, M.; Scherer, A.; Qiu, Y., Photonic crystal laser sources for chemical detection, Appl. Phys. Lett. 2003, 82, 4648CrossRefGoogle Scholar
  10. 10.
    Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Opt. Lett. 2004, 29, 1093CrossRefGoogle Scholar
  11. 11.
    Scheuer, J.; Yariv, A., Annular Bragg defect mode resonators, J. Opt. Soc. Am. B. 2003, 20, 2285–2291CrossRefGoogle Scholar
  12. 12.
    Scheuer, J.; Green, W. M. J.; DeRose, G.; Yariv, A., Low threshold two-dimensional annular Bragg lasers, Opt. Lett. 2004, 29, 2641–2643CrossRefGoogle Scholar
  13. 13.
    Scheuer, J.; Green,W. M. J.; DeRose, G.; Yariv, A., Lasing from a circular Bragg nanocavity with an ultra-small modal volume, Appl. Phys. Lett. 2005, 86, 251101CrossRefGoogle Scholar
  14. 14.
    Yeh, P.; Yariv, A.; Marom, E., Theory of Bragg fiber, J. Opt. Soc. Am. 1978, 68, 1196–1201CrossRefGoogle Scholar
  15. 15.
    Yariv, A., Optical Electronics in Modern Communications, 5th edn., Oxford University Press, New York, NY, 1997 Google Scholar
  16. 16.
    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J., Integrated-optical directional coupler biosensor, Opt. Lett. 1996, 21, 618–620CrossRefGoogle Scholar
  17. 17.
    Luff, B. J.; Wilkinson, J. S.; Piehler, J.; Hollenbach, U.; Igenhoff, J.; Fabricius, N., Integrated optical Mach-Zehnder biosensor, IEEE J. Lightwave Technol. 1998, 16, 583–592CrossRefGoogle Scholar
  18. 18.
    Boyd, R. W.; Heebner, J., Sensitive disk resonator photonic biosensor, Appl. Opt. 2001, 40, 5742–5747CrossRefGoogle Scholar
  19. 19.
    Levy, U.; Shamai, R., Tunable optofluidic devices, Microfluidics and Nanofluidics 2008, 4, 97–105CrossRefGoogle Scholar
  20. 20.
    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J., Integrated-optical directional coupler biosensor, Opt. Lett. 1996, 21, 618CrossRefGoogle Scholar
  21. 21.
    Scheuer, J.; Green, W. M. J.; DeRose, G.; Yariv, A., InGaAsP annular Bragg lasers: Theory, applications and modal properties, IEEE J. Sel. Top. Quantum Electron. 2005, 11, 476–484CrossRefGoogle Scholar
  22. 22.
    Coldren, L. A.; Corzine, S. W., Diode Lasers and Photonic Integrated Circuits, Wiley-Interscience Publications, New York, NY, 1995.Google Scholar
  23. 23.
    Kim, S.; Ryu, H.; Park, H.; Kim, G.; Choi, Y.; Lee, Y.; Kim, J., Two-dimensional photonic crystal hexagonal waveguide ring laser, Appl. Phys. Lett. 2002, 81, 2499–2501CrossRefGoogle Scholar
  24. 24.
    Yoshie, T.; Shchekin, O. B.; Chen, H.; Deppe, D. G.; Scherer, A., Planar photonic crystal nanolasers (II): Low-threshold quantum dot lasers, IEICE Trans. Electron. 2004, E87-C, 300–307Google Scholar
  25. 25.
    Painter, O.; Lee, R. K.; Scherer, A.; Yariv, A.; O'Brien, J. D.; Dapkus, P. D.; Kim, I., Two-dimensional photonic band-gap defect mode laser, Science 1999, 284, 1819–1821CrossRefGoogle Scholar
  26. 26.
    Green, W.; Scheuer, J.; DeRose, G.; Yariv, A., Ultra-sensitive biochemical sensor based on circular bragg micro-cavities, CLEO/QELS 2005, Baltimore, Maryland, paper CPDA7Google Scholar
  27. 27.
    Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G., Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity, Opt. Lett. 2004, 29, 1093–1095CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jacob Scheuer
    • 1
  1. 1.Department of Physical ElectronicsSchool of Electrical Engineering, Tel-Aviv UniversityRamat-AvivIsrael

Personalised recommendations