A Fast and Sensitive Integrated Young Interferometer Biosensor

  • Johannes S. Kanger
  • Vinod Subramaniam
  • Paul H. J. Nederkoorn
  • Aurel Ymeti
Part of the Integrated Analytical Systems book series (ANASYS)


We have developed an ultrasensitive biosensor based on an integrated optical Young interferometer. Key features of this sensor are that it is very compact, extremely sensitive, label free, and very fast. Therefore the Young interferometer has significant potential to be developed into a handheld, point-of-care device. In this chapter we review the progress that has been made on the development of integrated Young interferometer sensors. The sensor developed in our lab is discussed in detail. We demonstrate various applications of the current sensor. Special attention is paid to the detection of viruses. Finally a discussion on future prospects of this sensor for diagnostics is given.


Phase Change Interference Pattern Measuring Channel Sensor Surface Refractive Index Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hong, J. G.; Choi, J. S.; Han, G. Y.; Kang, J. K.; Kim, C. M.; Kim, T. S.; Yoon, D. S., A Mach-Zehnder interferometer based on silicon oxides for biosensor applications, Anal. Chim. Acta 2006, 573, 97–103CrossRefGoogle Scholar
  2. 2.
    Heideman, R. G.; Kooyman, R. P. H.; Greve, J., Performance of a highly sensitive optical wave-guide Mach-Zehnder interferometer immunosensor, Sens. Actuators B-Chem. 1993, 10, 209–217CrossRefGoogle Scholar
  3. 3.
    Schipper, E. F.; Brugman, A. M.; Dominguez, C.; Lechuga, L. M.; Kooyman, R. P. H.; Greve, J., The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology, Sens. Actuators B-Chem. 1997, 40, 147–1534.CrossRefGoogle Scholar
  4. 4.
    Duport, I. S.; Benech, P.; Rimet, R., New integrated-optics interferometer in planar technology, Appl. Opt. 1994, 33, 5954–5958CrossRefGoogle Scholar
  5. 5.
    Stamm, C.; Lukosz, W., Integrated optical difference interferometer as immunosensor, Sens. Actuators B-Chem. 1996, 31, 203–207CrossRefGoogle Scholar
  6. 6.
    Cox, E. R.; Jones, B. E. Fiber optic color sensors based on Fabry-Perot interferometry, In First International Conference on Optical Fiber Sensors, London, 1993Google Scholar
  7. 7.
    Clerc, D.; Lukosz, W., Integrated optical output grating coupler as biochemical sensor, Sens. Actuators B-Chem. 1994, 19, 581–586CrossRefGoogle Scholar
  8. 8.
    Cush, R.; Cronin, J. M.; Stewart, W. J.; Maule, C. H.; Molloy, J.; Goddard, N. J., The resonant mirror - a novel optical biosensor for direct sensing of biomolecular interactions. 1. Principle of operation and associated instrumentation, Biosens. Bioelectron. 1993, 8, 347–353CrossRefGoogle Scholar
  9. 9.
    Krioukov, E.; Klunder, D. J. W.; Driessen, A.; Greve, J.; Otto, C., Sensor based on an integrated optical microcavity, Opt. Lett. 2002, 27, 512–514CrossRefGoogle Scholar
  10. 10.
    Zhu, H. Y.; White, I. M.; Suter, J. D.; Zourob, M.; Fan, X. D., Opto-fluidic micro-ring resonator for sensitive label-free viral detection, Analyst 2008, 133, 356–360CrossRefGoogle Scholar
  11. 11.
    Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; Vahala, K. J., Label-free, single-molecule detection with optical microcavities, Science 2007, 317, 783–787CrossRefGoogle Scholar
  12. 12.
    Sun, Y. Z.; Shopova, S. I.; Frye-Mason, G.; Fan, X. D., Rapid chemical-vapor sensing using optofluidic ring resonators, Opt. Lett. 2008, 33, 788–790CrossRefGoogle Scholar
  13. 13.
    Kooyman, R. P. H.; Lenferink, A. T. M.; Eenink, R. G.; Greve, J., Vibrating mirror surface-plasmon resonance immunosensor, Anal. Chem. 1991, 63, 83–85CrossRefGoogle Scholar
  14. 14.
    Densmore, A.; Xu, D. X.; Janz, S.; Waldron, P.; Mischki, T.; Lopinski, G.; Delage, A.; Lapointe, J.; Cheben, P.; Lamontagne, B.; Schmid, J. H., Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response, Opt. Lett. 2008, 33, 596–598CrossRefGoogle Scholar
  15. 15.
    Brecht, A.; Piehler, J.; Lang, G.; Gauglitz, G., A direct optical immunosensor for atrazine detection, Anal. Chim. Acta 1995, 311, 289–299CrossRefGoogle Scholar
  16. 16.
    Lambeck, P. V., Integrated opto-chemical sensors, Sens. Actuators B-Chem. 1992, 8, 103–116CrossRefGoogle Scholar
  17. 17.
    Heideman, R. G.; Lambeck, P. V., Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system, Sens. Actuators B-Chem. 1999, 61, 100–127CrossRefGoogle Scholar
  18. 18.
    Brandenburg, A., Differential refractometry by an integrated-optical Young interferometer, Sens. Actuators B-Chem. 1997, 39, 266–271CrossRefGoogle Scholar
  19. 19.
    Brandenburg, A.; Krauter, R.; Kunzel, C.; Stefan, M.; Schulte, H., Interferometric sensor for detection of surface-bound bioreactions, Appl. Opt. 2000, 39, 6396–6405CrossRefGoogle Scholar
  20. 20.
    Cross, G. H.; Ren, Y. T.; Freeman, N. J., Young's fringes from vertically integrated slab waveguides: Applications to humidity sensing, J. Appl. Phys. 1999, 86, 6483–6488CrossRefGoogle Scholar
  21. 21.
    Cross, G. H.; Reeves, A. A.; Brand, S.; Popplewell, J. F.; Peel, L. L.; Swann, M. J.; Freeman, N. J., A new quantitative optical biosensor for protein characterisation, Biosens. Bioelectron. 2003, 19, 383–390CrossRefGoogle Scholar
  22. 22.
    Koster, T.; Lambeck, P., Fully integrated optical polarimeter, Sens. Actuators B-Chem. 2002, 82, 213–226CrossRefGoogle Scholar
  23. 23.
    Heideman, R. G. Optical Wabeguide Based Evanescent Field Immunosensors, University of Twente, Enschede, The Netherlands, 1993Google Scholar
  24. 24.
    Heideman, R. G.; Kooyman, R. P. H.; Greve, J., Immunoreactivity of adsorbed antihuman chorionic-gonadotropin studied with an optical wave-guide interferometric sensor, Biosens. Bioelectron. 1994, 9, 33–43CrossRefGoogle Scholar
  25. 25.
    Schipper, E. F.; Bergevoet, A. J. H.; Kooyman, R. P. H.; Greve, J., New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor, Anal. Chim. Acta 1997, 341, 171–176CrossRefGoogle Scholar
  26. 26.
    Schipper, E. F. Waveguide Immunosensing of Small Molecules, University of Twente, Enschede, The Netherlands, 1997Google Scholar
  27. 27.
    Minson, A. C., Alphaherpesviruses: herpes simplex and varicella zoster virus infection, In Topley and Wilson's Microbiology And Microbial Infections, 9th edn.; Mahy, B.; Collier, L., Eds.; Arnold, London, 1998, Vol. 1, 325–339Google Scholar
  28. 28.
    Ymeti, A.; Greve, J.; Lambeck, P. V.; Wink, T.; van Hovell, S.; Beumer, T. A. M.; Wijn, R. R.; Heideman, R. G.; Subramaniam, V.; Kanger, J. S., Fast, ultrasensitive virus detection using a young interferometer sensor, Nano Lett. 2007, 7, 394–397CrossRefGoogle Scholar
  29. 29.
    Xu, J.; Suarez, D.; Gottfried, D. S., Detection of avian influenza virus using an interferometric biosensor, Anal. Bioanal. Chem. 2007, 389, 1193–1199CrossRefGoogle Scholar
  30. 30.
    Wilson, J.; Hawkes, J. F. B., Optoelectronics, An Introduction. Prentice Hall, London, 1989Google Scholar
  31. 31.
    Ymeti, A.; Kanger, J. S.; Greve, J.; Lambeck, P. V.; Wijn, R.; Heideman, R. G., Realization of a multichannel integrated Young interferometer chemical sensor, Appl. Opt. 2003, 42, 5649–5660CrossRefGoogle Scholar
  32. 32.
    Hecht, E., Optics, Addison Wesley, Reading, MA, 1998Google Scholar
  33. 33.
    Ymeti, A.; Kanger, J. S.; Wijn, R.; Lambeck, P. V.; Greve, J., Development of a multichannel integrated interferometer immunosensor, Sens. Actuators B-Chem. 2002, 83, 1–7CrossRefGoogle Scholar
  34. 34.
    Defeijter, J. A.; Benjamins, J.; Veer, F. A., Ellipsometry as a tool to study adsorption behavior of synthetic and biopolymers at air-water-interface, Biopolymers 1978, 17, 1759–1772CrossRefGoogle Scholar
  35. 35.
    Weast, R. C., Handbook of Chemistry and Physics, 65th edn.; CRC Press, Boca Raton, FL, 1984Google Scholar
  36. 36.
    Parriaux, O.; Veldhuis, G. J., Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors, J. Lightwave Technol. 1998, 16, 573–582CrossRefGoogle Scholar
  37. 37.
    Haruna, M.; Segawa, Y.; Nishihara, H., Nondestructive and simple method of optical-wave-guide loss measurement with optimization of end-fire coupling, Electron. Lett. 1992, 28, 1612–1613CrossRefGoogle Scholar
  38. 38.
    Nagel, T.; Ehrentreich-Forster, E.; Singh, M.; Schmitt, K.; Brandenburg, A.; Berka, A.; Bier, F. F., Direct detection of tuberculosis infection in blood serum using three optical label-free approaches, Sens. Actuators B-Chem. 2008, 129, 934–940CrossRefGoogle Scholar
  39. 39.
    Parishi, G. I.; Haszko, S. E.; Rozgonyi, G. A., Tapered windows in SiO2:the effect of NH4F:HF dilution and etching temperature, J. Electrochem. Soc. Solid State Sci. Technol. 1997, 124, 917–921Google Scholar
  40. 40.
    Ymeti, A. Development of a Multichannel Integrated Young Interferometer Immunosensor, University of Twente, Enschede, The Netherlands, 2004Google Scholar
  41. 41.
    Ymeti, A.; Kanger, J. S.; Greve, J.; Besselink, G. A. J.; Lambeck, P. V.; Wijn, R.; Heideman, R. G., Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor, Biosens. Bioelectron. 2005, 20, 1417–1421CrossRefGoogle Scholar
  42. 42.
    Antrade, J. D., Principles of protein adsorption, In Surface and Interfacial Aspects of Biomedical Polymers; Antrade, J. D., Ed.; Plenum Press, New York, 1985, Vol. 2CrossRefGoogle Scholar
  43. 43.
    Owaku, K.; Goto, M.; Ikariyama, Y.; Aizawa, M., Optical immunosensing for IgG, Sens. Actuators B-Chem. 1993, 14, 723–724CrossRefGoogle Scholar
  44. 44.
    Lu, B.; Smyth, M. R.; Okennedy, R., Oriented immobilization of antibodies and its applications in immunoassays and immunosensors, Analyst 1996, 121, R29–R32CrossRefGoogle Scholar
  45. 45.
    Piatak, M.; Saag, M. S.; Yang, L. C.; Clark, S. J.; Kappes, J. C.; Luk, K. C.; Hahn, B. H.; Shaw, G. M.; Lifson, J. D., High-levels of HIV-1 in plasma during all stages of infection determined by competitive PCR, Science 1993, 259, 1749–1754CrossRefGoogle Scholar
  46. 46.
    Pachl, C.; Todd, J. A.; Kern, D. G.; Sheridan, P. J.; Fong, S. J.; Stempien, M.; Hoo, B.; Besemer, D.; Yeghiazarian, T.; Irvine, B.; Kolberg, J.; Kokka, R.; Neuwald, P.; Urdea, M. S., Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay, J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 8, 446–454CrossRefGoogle Scholar
  47. 47.
    Kumarasamy, V.; Wahab, A. H. A.; Chua, S. K.; Hassan, Z.; Chem, Y. K.; Mohamad, M.; Chua, K. B., Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection, J. Virolog. Methods 2007, 140, 75–79CrossRefGoogle Scholar
  48. 48.
    Shanmukh, S.; Jones, L.; Driskell, J.; Zhao, Y. P.; Dluhy, R.; Tripp, R. A., Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate, Nano Lett. 2006, 6, 2630–2636CrossRefGoogle Scholar
  49. 49.
    Shanmukh, S.; Jones, L.; Zhao, Y. P.; Driskell, J. D.; Tripp, R. A.; Dluhy, R. A., Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques, Anal. Bioanal. Chem. 2008, 390, 1551–1555CrossRefGoogle Scholar
  50. 50.
    Cooper, M. A.; Dultsev, F. N.; Minson, T.; Ostanin, V. P.; Abell, C.; Klenerman, D., Direct and sensitive detection of a human virus by rupture event scanning, Nat. Biotechnol. 2001, 19, 33–837CrossRefGoogle Scholar
  51. 51.
    Patolsky, F.; Zheng, G. F.; Hayden, O.; Lakadamyali, M.; Zhuang, X. W.; Lieber, C. M., Electrical detection of single viruses, Proc. Natl. Acad. Sci. USA 2004, 101, 14017–14022CrossRefGoogle Scholar
  52. 52.
    Gupta, A.; Akin, D.; Bashir, R., Single virus particle mass detection using microresonators with nanoscale thickness, Appl. Phys. Lett. 2004, 84, 1976–1978CrossRefGoogle Scholar
  53. 53.
    Owen, T. W.; Al-Kaysi, R. O.; Bardeen, C. J.; Cheng, Q., Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles, Sens. Actuators B-Chem. 2007, 126, 691–699CrossRefGoogle Scholar
  54. 54.
    Mellors, J. W.; Rinaldo, C. R.; Gupta, P.; White, R. M.; Todd, J. A.; Kingsley, L. A., Prognosis in HIV-1 infection predicted by the quantity of virus in plasma, Science 1996, 272, 1167–1170CrossRefGoogle Scholar
  55. 55.
    Levine, A. J., Viruses, Scientific American Library, New York, 1992Google Scholar
  56. 56.
    Balch, W. M.; Vaughn, J.; Novotny, J.; Drapeau, D. T.; Vaillancourt, R.; Lapierre, J.; Ashe, A., Light scattering by viral suspensions, Limnol. Oceanogr. 2000, 45, 492–498CrossRefGoogle Scholar
  57. 57.
    Ymeti, A.; Subramaniam, V.; Beumer, T. A. M.; Kanger, J. S., An ultrasensitive Young interferometer handheld sensor for rapid virus detection, Expert Rev. Med. Devices 2007, 4, 447–454CrossRefGoogle Scholar
  58. 58.
    Berger, C. E. H.; Beumer, T. A. M.; Kooyman, R. P. H.; Greve, J., Surface plasmon resonance multisensing, Anal. Chem. 1998, 70, 703–706CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Johannes S. Kanger
    • 1
  • Vinod Subramaniam
    • 1
  • Paul H. J. Nederkoorn
  • Aurel Ymeti
  1. 1.Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations