Surface Thermodynamics: Small Molecule Adsorption Calorimetry on Metal Single Crystals

  • Vittorio Fiorin
  • David Borthwick
  • David A. King


Using single-crystal adsorption calorimetry (SCAC), accurate coverage-dependent heat of adsorption and sticking probability data are presented for adsorption of CO, O2 and NO on flat and stepped nickel, platinum and iron single-crystal surfaces. We show that step atoms are the key to understanding the increased reactivity for dissociation and oxidation compared to the low Miller index surfaces. Pre-exponential factors for first-order desorption, ν, are directly evaluated and show considerably more variation than previously assumed: depending on the gas-surface system, we find values for ν that range from 1011 to 1022 s−1. In this respect, evaluations of the activation energy for first-order desorption using temperature-programmed desorption analyses may be severely flawed if a fixed value of ν, usually 1013 s−1, is chosen.


Step Atom Molecular Adsorption Initial Heat Sticking Probability Integral Heat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the EPSRC for an equipment grant, postdoctoral support (V.F.) and a research studentship (D.B.). Jacques Chevallier of Aarhus University, Denmark, is thanked for providing the thin film single crystals.


  1. 1.
    Stuck A, Wartnaby CE, Yeo YY, Stuckless JT, Al-Sarraf N, King DA (1996) An improved single crystal adsorption calorimeter. Surf Sci 349:229CrossRefGoogle Scholar
  2. 2.
    Ge Q, Kose R, King DA (2000) Adsorption energetics and bonding from femtomole calorimetry and from first principles theory. Adv Cat 43:207CrossRefGoogle Scholar
  3. 3.
    King DA, Wells MG (1972) Molecular beam investigation of adsorption kinetics on bulk metal targets: nitrogen on tungsten. Surf Sci 29:454CrossRefGoogle Scholar
  4. 4.
    Kose R (1998) New frontiers in single adsorption calorimetry, Ph.D. Thesis, University of CambridgeGoogle Scholar
  5. 5.
    Xu JZ, Yates JT (1995) Terrace width effect on adsorbate vibrations – a comparison of Pt{335} and Pt{112} for chemisorption of CO. Surf Sci 327:193CrossRefGoogle Scholar
  6. 6.
    Yeo YY, Vattuone L, King DA (1997) Calorimetric heats for CO and oxygen adsorption and for the catalytic CO oxidation reaction on Pt{111}. J Chem Phys 106:392CrossRefGoogle Scholar
  7. 7.
    Kose R, King DA (1999) Energetics and CO-induced lifting of a (1 × 2) surface reconstruction observed on Pt{311}. Chem Phys Lett 313:1CrossRefGoogle Scholar
  8. 8.
    Kisliuk P (1957) The sticking probabilities of gases chemisorbed on the surfaces of solids. J Phys Chem Solids 3:95CrossRefGoogle Scholar
  9. 9.
    Karmazyn AD, Fiorin V, Jenkins SJ, King DA (2003) First-principles theory and microcalorimetry of CO adsorption on the 211 surfaces of Pt and Ni. Surf Sci 538:171CrossRefGoogle Scholar
  10. 10.
    Brown WA, Kose R, King DA (1998) Femtomole adsorption calorimetry on single-crystal surfaces. Chem Rev 98:797CrossRefGoogle Scholar
  11. 11.
    Kose R, Brown WA, King DA (1999) Role of lateral interactions in adsorption kinetics: CO/Rh{100}. J Phys Chem B 103:8722CrossRefGoogle Scholar
  12. 12.
    Castner DG, Sexton BA, Somorjai GA (1978) LEED and thermal desorption studies of small molecules (H2, O2, CO, CO2, NO, C2H4, C2H2 and C) chemisorbed on the rhodium (111) and (100) surfaces. Surf Sci 71:519CrossRefGoogle Scholar
  13. 13.
    Gurney BA, Richter LJ, Villarrubia JS, Ho W (1987) The populations of bridge and top site CO on Rh(100) vs coverage, temperature, and during reaction with O. J Chem Phys 87:6710CrossRefGoogle Scholar
  14. 14.
    Borthwick D, Fiorin V, Jenkins SJ, King DA Facile dissociation of CO on Fe{211}: evidence from microcalorimetry and first-principles theory. Surf Sci (submitted to)Google Scholar
  15. 15.
    Moon DW, Dwyer DJ, Bernasek SL (1985) Adsorption of CO on the clean and sulphur modified Fe(100) surface. Surf Sci 163:215CrossRefGoogle Scholar
  16. 16.
    Benziger JB, Madix RJ (1980) The effects of carbon, oxygen, sulphur and potassium adlayers on CO and H2 adsorption on Fe(100). Surf Sci 94:119CrossRefGoogle Scholar
  17. 17.
    Karmazyn AD, Fiorin V, King DA (2004) Direct sticking and differential adsorption heats as probes of structural transitions: O2 on the stepped Ni{211} surface. J Am Chem Soc 126:14273CrossRefGoogle Scholar
  18. 18.
    Stuckless JT, Wartnaby CE, Al-Sarraf N (1997) St. J. B. Dixon-Warren, M. Kovar, and D. A. King, Oxygen chemisorption and oxide film growth on Ni{100}, {110}, and {111}: Sticking probabilities and microcalorimetric adsorption heats, J. Chem Phys 106:2012Google Scholar
  19. 19.
    Jenkins SJ private communication.Google Scholar
  20. 20.
    Horgan AM, King DA (1970) Oxygen adsorption, reconstruction, and thin oxide film formation on clean metal surfaces: Ni, Fe, W and Mo. Surf Sci 23:259CrossRefGoogle Scholar
  21. 21.
    Holloway PH, Hudson JB (1974) Kinetics of the reaction of oxygen with clean nickel single crystal surfaces : I. Ni(100) surface. Surf Sci 43:123CrossRefGoogle Scholar
  22. 22.
    Bäumer M, Cappus D, Kuhlenbeck H, Freund H-J, Wilhelmi G, Brodde A, Neddermeyer H (1991) The structure of thin NiO(100) films grown on Ni(100) as determined by low-energy-electron diffraction and scanning tunnelling microscopy. Surf Sci 253:116CrossRefGoogle Scholar
  23. 23.
    Mortensen K, Klink C, Jensen F, Besenbacher F, Stensgaard I (1989) Adsorption position of oxygen on the Pt(111) surface. Surf Sci 220:L701CrossRefGoogle Scholar
  24. 24.
    Heyd DV, Scharff RJ, Yates JT Jr (1999) Comparison of thermal and photochemical behavior of O2 chemisorbed on Pt(335). J Chem Phys 110:6939CrossRefGoogle Scholar
  25. 25.
    Gee AT, Hayden BE (2000) The dynamics of O2 adsorption on Pt(533): step mediated molecular chemisorption and dissociation. J Chem Phys 113:10333CrossRefGoogle Scholar
  26. 26.
    Berdau M, Moldenhauer S, Hammoudeh A, Block JH, Christmann K (2000) Interaction of oxygen with Pt(210): formation of new oxygen states at higher exposures. Surf Sci 446:323CrossRefGoogle Scholar
  27. 27.
    Sano M, Seimiya Y, Ohno Y, Matsushima T, Tanaka S, Kamada M (1999) Orientation of oxygen admolecules on a stepped platinum(133) surface. Surf Sci 421:386CrossRefGoogle Scholar
  28. 28.
    Feibelman PJ, Esch S, Michely T (1996) O binding sites on stepped Pt(111) surfaces. Phys Rev Lett 77:2257CrossRefGoogle Scholar
  29. 29.
    Winkler A, Guo X, Siddiqui HR, Hagans PL, Yates JT Jr (1988) Kinetics and energetics of oxygen adsorption on Pt(111) and Pt(112)- A comparison of flat and stepped surfaces. Surf Sci 201:419CrossRefGoogle Scholar
  30. 30.
    Jenkins SJ (2006) Dissociative adsorption and adsorbate-induced reconstruction on Fe{211}. Surf Sci 600:1431CrossRefGoogle Scholar
  31. 31.
    Sokolov J, Jona F, Marcus PM (1986) Missing-row surface structure on body-centered-cubic (211): Fe(211)2 × 1-0. Europhys Lett 1:401Google Scholar
  32. 32.
    Brucker CF, Rhodin TN (1976) Oxygen chemisorption and reaction on α-Fe(100) using photoemission and low-energy electron diffraction. Surf Sci 57:523CrossRefGoogle Scholar
  33. 33.
    Simmons GW, Dwyer DJ (1975) A LEED-AES study of the initial stages of oxidation of Fe (001). Surf Sci 48:373CrossRefGoogle Scholar
  34. 34.
    Hodgson A, Wight A, Worthy G (1994) The kinetics of O2 dissociative chemisorption on Fe(110). Surf Sci 319:119CrossRefGoogle Scholar
  35. 35.
    Wight A, Condon NG, Leibsle FM, Worthy G, Hodgson A (1995) Initial stages of Fe(110) oxidation at 300 K: kinetics and structure. Surf Sci 331–333:133CrossRefGoogle Scholar
  36. 36.
    Miyano T, Sakisaka Y, Komeda T, Onchi M (1986) Electron energy-loss spectroscopy study of oxygen chemisorption and initial oxidation of Fe(110). Surf Sci 169:197CrossRefGoogle Scholar
  37. 37.
    Melmed AJ, Carroll JJ (1973) Oxidation of (011) iron at room temperature: mainly LEED aspects. J Vac Sci Technol 10:164CrossRefGoogle Scholar
  38. 38.
    Lide DR (ed) (2002) CRC handbok of chemistry and physics, 83rd edn. CRC Press, Boca RatonGoogle Scholar
  39. 39.
    Karmazyn AD, Fiorin V, King DA (2003) Calorimetric studies of NO on Ni{211}: criteria for switching from dissociative to molecular adsorption. Surf Sci 547:184CrossRefGoogle Scholar
  40. 40.
    Vattuone L, Yeo YY, King DA (1996) Adatom bond energies and lateral interaction energies from calorimetry: NO, O2, and N2 adsorption on Ni{100}. J Chem Phys 104:8096CrossRefGoogle Scholar
  41. 41.
    Vattuone L, Yeo YY, King DA (1996) Lateral interactions as the determinant in the switch from dissociative to molecular chemisorption: NO on Ni{100}. Catal Lett 41:119CrossRefGoogle Scholar
  42. 42.
    Zhu P, Shimada T, Kondoh H, Nakai I, Nagasaka M, Ohta T (2004) Adsorption structures of NO on Pt(111) studied by the near edge X-ray absorption fine structure spectroscopy. Surf Sci 565:232CrossRefGoogle Scholar
  43. 43.
    Mukerji RJ, Bolina AS, Brown WA, Liu Z-P, Hu P (2004) The temperature dependence of the adsorption of NO on Pt{211}: a RAIRS and DFT investigation. J Phys Chem B 108:289CrossRefGoogle Scholar
  44. 44.
    Liu Z-P, Jenkins SJ, King DA (2003) Step-enhanced selectivity of NO reduction on platinum-group metals. J Am Chem Soc 125:14660CrossRefGoogle Scholar
  45. 45.
    Ge Q, Neurock M (2004) Structure dependence and NO adsorption and dissociation on. platinum surfaces, J. Am Chem Soc 126:1551CrossRefGoogle Scholar
  46. 46.
    Kishi K, Roberts MW (1985) The Adsorption of nitric oxide by iron surfaces studied by photoelectron spectroscopy, Proc. Roy. Soc. Lond. A 352 (1976) 289; C. Klauber and B.G. Baker, Adsorbed nitric oxide on iron(110). Appl Surf Sci 22:486Google Scholar
  47. 47.
    Yeo YY, Vattuone L, King DA (1996) Energetics and kinetics of CO and NO adsorption on Pt{100}: Restructuring and lateral interactions. J Chem Phys 104:3810CrossRefGoogle Scholar
  48. 48.
    Laidler KJ (1987) Chemical Kinetics. HarperCollins, New YorkGoogle Scholar
  49. 49.
    Menzel D (1982) The Chemistry and Physics of Solid Surfaces, vol 4. Springer-Verlag, BerlinGoogle Scholar
  50. 50.
    Michael Gottfried J, Ebbe K (2006) Vestergaard, Parthasarathi Bera, and Charles T. Campbell, heat of adsorption of naphthalene on Pt(111) measured by adsorption calorimetry. J Phys Chem B 110:17539Google Scholar
  51. 51.
    Brown WA, Kose R, King DA (1999) Calorimetric measurements of the adsorption heat for ethene on Pt{211} and Pt{311}. Surf Sci 440:271CrossRefGoogle Scholar
  52. 52.
    Liu L (2001) Q.-X Guo, Isokinetic relationship, isoequilibrium relationship, and enthalpy-entropy compensation. Chem Rev 101:673CrossRefGoogle Scholar
  53. 53.
    Bligaard T, Honkala K, Logadottir A, Norskov JK, Dahl S, Jacobsen CJH (2003) On the compensation effect in heterogeneous catalysis. J Phys Chem B 107:9325CrossRefGoogle Scholar
  54. 54.
    Galwey AK, Bettany DG, Mortimer M (2006) Kinetic compensation effects observed during oxidation of carbon monoxide on γ-alumina supported palladium, platinum, and rhodium metal catalysts: toward a mechanistic explanation. Int J Chem Kin 38:689CrossRefGoogle Scholar
  55. 55.
    Cremer E (1955) The compensation effect in heterogeneous catalysis. Adv Catal 7:75CrossRefGoogle Scholar
  56. 56.
    Pfnur H, Feulner P, Engelhardt HA, Menzel D (1978) An example of “fast” desorption: anomalously high pre-exponentials for CO desorption from Ru(001), Chem Phys Lett 59:481Google Scholar
  57. 57.
    Estrup PJ, Greene EF, Cardillo MJ, Tully JC (1986) Influence of surface phase transitions on desorption kinetics: the compensation effect. J Phys Chem 90:4099CrossRefGoogle Scholar
  58. 58.
    Alnot P, Cassuto A, King DA (1989) Adsorption and desorption kinetics with no precursor trapping: hydrogen and deuterium on W{100}. Surf Sci 215:29CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Vittorio Fiorin
    • 1
  • David Borthwick
    • 1
  • David A. King
    • 1
  1. 1.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations