Surface Science Studies of Strong Metal-Oxide Interactions on Model Catalysts

  • Michael Bowker
  • Roger A. Bennett


Here we report on recent model studies of a phenomenon known in catalysis as the “Strong Metal-Support Interaction” (SMSI for short). Decoration of the surfaces of precious metal single crystals, films, and nanoparticles supported on titania produces beautiful long-range ordered structures which can often be resolved at atomic resolution using scanning tunneling microscopy (STM). Such surfaces show reduced binding for CO and effectively lower the activity of the surface. Consideration is given to the cause and composition of the surface layer, that is, whether it is a kind of intermetallic layer, or is simply a thin layer of titanium (sub-)oxide.


Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Model Catalyst Scanning Tunneling Spectroscopy Strong Metal Support Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to a number of students for their work in this area of model oxide surface science, in particular Peter Stone, Neil Perkins, Elodie Fourré, and Rupert Smith. All of those students, and RAB were supported by the EPSRC, while additional support for the students was provided by Cardiff University, the University of Reading, Oxford Instruments, and Johnson Matthey plc. We are grateful to all of these organizations for their sponsorship of our research.


  1. 1.
    Tauster S, Fung S, Garten R (1978) Strong metal-support interactions – group-8 noble-metals supported on TiO2. J Am Chem Soc 100:170CrossRefGoogle Scholar
  2. 2.
    Tauster S, Fung S (1978) Strong metal-support interactions – occurrence among binary oxides of groups IIa–Vb. J Catal 55:29CrossRefGoogle Scholar
  3. 3.
    Tauster S (1986) Strong metal support interactions – facts and uncertainties. In: Baker R, Tauster S, Dumesic J (eds) ACS symposium series 298. ACS, Washington DC, p 1Google Scholar
  4. 4.
    Tauster S (1987) Strong metal-support interactions. Acc Chem Res 20:389CrossRefGoogle Scholar
  5. 5.
    Ko EI, Garten RL (1981) Ethane hydrogenolysis studies of TiO2-supported group VIII metal-catalysts. J Catal 68:223CrossRefGoogle Scholar
  6. 6.
    Resasco D, Haller GL (1982) Dispersion effects on alkane hydrogenolysis over rhodium supported on titanium oxide. Stud Surf Sci Catal 11:105CrossRefGoogle Scholar
  7. 7.
    Vannice MA, Garten RL (1979) Metal-support effects on the activity and selectivity of Ni catalysts in CO/H2 synthesis reactions. J Catal 56:236CrossRefGoogle Scholar
  8. 8.
    Bowker M, Stone P, Bennett RA, Perkins N (2002) CO adsorption on Pd/TiO2(110) model catalyst. Surf Sci 497:155CrossRefGoogle Scholar
  9. 9.
    Meriaudeau P, Ellestad OH, Dufaux M, Naccache C (1982) Metal-support interaction – catalytic properties of TiO2-supported platinum, iridium and rhodium. J Catal 75:243CrossRefGoogle Scholar
  10. 10.
    Santos J, Phillips J, Dumesic J (1983) Metal support interactions between iron and titania for catalysts prepared by thermal-decomposition of iron pentacarbonyl and by impregnation. J Catal 84:147CrossRefGoogle Scholar
  11. 11.
    Raupp GB, Dumesic JA (1984) Effect of titania surface species on the chemisorption of CO and H2 on polycrystalline nickel. J Phys Chem 88:660CrossRefGoogle Scholar
  12. 12.
    Pesty F (1995) H-P. Steinruck, and T. Madey, thermal-stability of Pt films on TiO2(110) – evidence for encapsulation. Surf Sci 339:83CrossRefGoogle Scholar
  13. 13.
    Pan J, Madey T (1993) The encapsulation of Fe on TiO2(110). Catal Lett 20:269CrossRefGoogle Scholar
  14. 14.
    Poirier GE, Hance BK, White JM (1998) Scanning tunneling microscopic and auger-electron spectroscopic characterization of a model catalyst – rhodium on TiO2(001). J Phys Chem 97:5965CrossRefGoogle Scholar
  15. 15.
    Suzuki T, Souda R (2000) The encapsulation of Pd by the supporting TiO2(110) surface induced by strong metal-support interactions. Surf Sci 448:33CrossRefGoogle Scholar
  16. 16.
    Logan AD, Braunschweig EJ, Datye AK, Smith DJ (1988) Direct observation of the surfaces of small metal crystallites – rhodium supported on TiO2. Langmuir 4:827CrossRefGoogle Scholar
  17. 17.
    Datye AK, Kalakkad DS, Yao MH, Smith DJ (1995) Comparison of metal-support interactions in Pt/TiO2 and Pt/CeO2. J Catal 155:148CrossRefGoogle Scholar
  18. 18.
    Stevenson S, Dumesic JA, Baker RT, Ruckenstein E (eds) (1987) Metal-support interactions in catalysis, sintering and re-dispersion. Van Nostrand-Reinhold, NYGoogle Scholar
  19. 19.
    Bowker M, Fourre E (2008) Direct interactions between metal nanoparticles and support: STM studies of Pd on TiO2(110). Appl Surf Sci 254:4225–4229CrossRefGoogle Scholar
  20. 20.
    Bennett RA, Pang CL, Perkins N, Smith RD, Morrall P, Kvon RI, Bowker M (2002) Surface structures in the SMSI state: Pd on (1×2) reconstructed TiO2(110). J Phys Chem B 106:4688CrossRefGoogle Scholar
  21. 21.
    Bennett RA, Tarr DM, Mulheran PA (2003) Ripening processes in supported and pinned nanoclusters – experiment, simulation and theory. J Phys Condens Matt 15:S3139CrossRefGoogle Scholar
  22. 22.
    Fu Q, Wagner T, Olliges S, Carstanjen H-D (2005) Metal-oxide interfacial reactions: encapsulation of Pd on TiO2(110). J Phys Chem B 109:944CrossRefGoogle Scholar
  23. 23.
    Silly F, Castell MR (2005) Encapsulated Pd nanocrystals supported by nanoline-structured SrTiO3 (001). J Phys Chem B 109:12316CrossRefGoogle Scholar
  24. 24.
    Bowker M, Stone P, Morrall P, Smith R, Bennett R, Perkins N, Kvon R, Pang C, Fourré E, Hall M (2005) Model catalyst studies of the strong metal-support interaction: surface structure identified by STM on Pd nanoparticles on TiO2(110). J Catal 234:172CrossRefGoogle Scholar
  25. 25.
    Dulub O, Hebenstreit W, Diebold U (2000) Imaging cluster surfaces with atomic resolution: the strong metal-support interaction state of Pt supported on TiO2(110). Phys Rev Lett 84:3646CrossRefGoogle Scholar
  26. 26.
    Jennison DR, Dulub O, Hebenstreit W, Diebold U (2001) Structure of an ultrathin TiOx film, formed by the strong metal support interaction (SMSI), on Pt nanocrystals on TiO2(110). Surf Sci 492:L677CrossRefGoogle Scholar
  27. 27.
    Matsumoto T, Batzill M, Hsieh S, Koel BE (2004) Fundamental studies of titanium oxide-Pt(100) interfaces – I. Stable high temperature structures formed by annealing TiOx films on Pt(100). Surf Sci 572:127CrossRefGoogle Scholar
  28. 28.
    Matsumoto T, Batzill M, Hsieh S, Koel BE (2004) Fundamental studies of titanium oxide-Pt(100) interfaces - II. Influence of oxidation and reduction reactions on the surface structure of TiOx films on Pt(100). Surf Sci 572:146CrossRefGoogle Scholar
  29. 29.
    Sedona F, Rizzi GA, Agnoli S, Llabrés I Xamena FX, Papageorgiou A, Ostermann D, Sambi M, Finetti P, Schierbaum K, Granozzi G (2005) Ultrathin TiOx films on Pt(111): a LEED, XPS, and STM investigation. J Phys Chem B 109:24411Google Scholar
  30. 30.
    Sedona F, Agnoli S, Granozzi G (2005) Ultrathin wagon-wheel-like TiOx phases on Pt(111): a combined low-energy electron diffraction and scanning tunneling microscopy investigation. J Phys Chem B 110:15359CrossRefGoogle Scholar
  31. 31.
    Barcaro G, Sedona F, Fortunelli A, Granozzi G (2007) Structure of a TiOx zigzag like monolayer on Pt(111). J Phys Chem C 111:6095CrossRefGoogle Scholar
  32. 32.
    Pick Š, Mikušik P (1993) Surface electronic-structure of alloys with split D bands. Phys Rev B 47:15860CrossRefGoogle Scholar
  33. 33.
    Chen WH, Severin L, Göthelid M, Hammar M, Cameron S, Paul J (1994) Electronic and geometric structure of clean Pt3Ti(111). Phys Rev B 50:5620CrossRefGoogle Scholar
  34. 34.
    Hsieh S, Matsumoto T, Batzill M, Koel BE (2003) Structural and chemical properties of a c(2 × 2)-Ti/Pt(100) second-layer alloy: a probe of strong ligand effects on surface Pt atoms. Phys Rev B 68:205417CrossRefGoogle Scholar
  35. 35.
    Bzowski A, Sham TK (1993) Pd-Ti bimetallics – a study of the electronic-structure using X-ray photoelectron-spectroscopy and X-ray-absorption near-edge structure. Phys Rev B 48:7836CrossRefGoogle Scholar
  36. 36.
    Pick Š, Mikušik P (1992) Surface, interface and bulk electronic-structure of some Pd-Ti systems by a tight-binding method. J Phys I France 2:121CrossRefGoogle Scholar
  37. 37.
    Beard BC, Ross PN (1986) Pt-Ti alloy formation from high-temperature reduction of a titania-impregnated Pt catalyst – implications for strong metal support interaction. J Phys Chem 90:6811CrossRefGoogle Scholar
  38. 38.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53 (see the overview and references within)Google Scholar
  39. 39.
    Onishi H, Iwasawa Y (1996) Dynamic visualization of a metal-oxide-surface/gas-phase reaction: time-resolved observation by scanning tunneling microscopy at 800 K. Phys Rev Lett 76:791CrossRefGoogle Scholar
  40. 40.
    Bennett RA, Stone P, Price NJ, Bowker M (1999) Two (1×2) reconstructions of TiO2(110): surface rearrangement and reactivity studied using elevated temperature STM. Phys Rev Lett 82:3831CrossRefGoogle Scholar
  41. 41.
    Bennett RA, Poulston S, Stone P, Bowker M (1999) A LEED and STM study of crystallographic shear plane termination on a reduced TiO2(110) surface. Phys Rev B 59:10341CrossRefGoogle Scholar
  42. 42.
    Sá J, Bernardi J, Anderson JA (2007) Imaging of low temperature induced SMSI on Pd/TiO2 catalysts. Catal Lett 114:91CrossRefGoogle Scholar
  43. 43.
    Stone P, Bennett RA, Bowker M (1999) Reactive re-oxidation of reduced TiO2(110) demonstrated by high temperature STM. New J Phys 1:8 ( Scholar
  44. 44.
    Smith RD, Bennett RA, Bowker M (2002) Measurement of the surface-growth kinetics of reduced TiO2(110) during re-oxidation using time-resolved scanning tunneling microscopy. Phys Rev B 66:035409CrossRefGoogle Scholar
  45. 45.
    Bennett RA, Stone P, Bowker M (1999) Pd nanoparticle enhanced re-oxidation of TiO2 support material: imaging of spillover and a new form of SMSI. Catal Lett 59:99CrossRefGoogle Scholar
  46. 46.
    Iddir H, Öğüt S, Zapol P, Browing ND (2007) Diffusion mechanisms of native point defects in rutile TiO2: ab initio total-energy calculations. Phys Rev B 75:073203Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Wolfson Nanoscience Laboratory, School of Chemistry, Cardiff UniversityCardiffUK
  2. 2.School of chemistry, University of ReadingReadingUK

Personalised recommendations