Advertisement

Surface Reactions of Oxygen Containing Compounds on Metal Oxide (TiO2 and UO2) Single Crystals

  • Hicham Idriss
Chapter

Abstract

The surfaces of model metal oxides offer many fundamental examples where the outcome of a specific chemical reaction might be linked to the surface structure and local electronic properties. In this work the reaction of simple molecules such as ammonia, alcohols, carboxylic and amino acids is studied on two metal oxide single crystals: rutile TiO2(110) and (001) and fluorite UO2(111). Studies are conducted with XPS, TPD, and Plane Wave Density Functional Theory (DFT). The effect of surface structure is outlined by comparing the TiO2(110) rutile surface to those of TiO2(001), while the effect of surface point defects is mainly discussed in the case of stoichiometric and substoichiometric UO2(111).

Keywords

Uranium Oxide Surface Oxygen Atom Scanning Tunneling Microscopy Study Madelung Potential Trimethyl Acetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mavrikakis M, Baumer M, Freund HJ, Norskøv JK (2002) Structure sensitivity of CO dissociation on Rh surfaces. Catal Lett 81:153CrossRefGoogle Scholar
  2. 2.
    Ertl G, Pridge D, Schloegl R, Weiss M (1983) Surface characterization of ammonia synthesis catalysts. J Catal 79:359CrossRefGoogle Scholar
  3. 3.
    Bagot PA (2004) Fundamental surface science studies of automobile exhaust catalysis. J Mat Sci Technol 20:679CrossRefGoogle Scholar
  4. 4.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395:583CrossRefGoogle Scholar
  5. 5.
    Gonga H, Hu JQ, Wang JH, Ong CH, Zhub FR (2006) Nano-crystalline Cu-doped ZnO thin film gas sensor for CO. Sens Actuators B Chem 115:247CrossRefGoogle Scholar
  6. 6.
    Yee A, Morrison SJ, Idriss H (2000) The reactions of ethanol over M/CeO2 catalysts Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2. Catal Today 63:327CrossRefGoogle Scholar
  7. 7.
    Frank M, Kühnemuth R, Bäumer M, Freund H-J (1999) Oxide-supported Rh particle structure probed with carbon monoxide. Surf Sci 427–428:288Google Scholar
  8. 8.
    Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ (2007) Deactivation of a Au/CeO2 catalyst during the low-temperature water-gas shift reaction and its reactivation: A combined TEM, XRD, XPS, DRIFTS, and activity study. J Catal 250:139CrossRefGoogle Scholar
  9. 9.
    Wang S-Y, Moon SH, Vannice MA (1981) The effect of SMSI (strong metal-support interaction) behavior on CO adsorption and hydrogenation on Pd catalysts II. Kinetic behavior in the methanation reaction. J Catal 71:167CrossRefGoogle Scholar
  10. 10.
    Barteau MA (1996) Organic reactions at well-defined oxide surfaces. Chem Rev 96:1413CrossRefGoogle Scholar
  11. 11.
    Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53CrossRefGoogle Scholar
  12. 12.
    Idriss H, Barteau MA (2000) Active sites on oxides: from single crystals to catalysts. Adv Catal 45:261CrossRefGoogle Scholar
  13. 13.
    Henderson MA (2002) The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep 46:1CrossRefGoogle Scholar
  14. 14.
    Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energ Rev 11:401CrossRefGoogle Scholar
  15. 15.
    Ruzycki N, Herman GS, Boatner LA, Diebold U (2003) Scanning tunneling microscopy study of the anatase (100) surface. Surf Sci 529:L239CrossRefGoogle Scholar
  16. 16.
    Tanner RE, Sasahara A, Liang Y, Altman EI, Onishi H (2002) Formic acid adsorption on anatase TiO2(001)-(1 × 4) thin films studied by NC-AFM and STM. J Phys Chem B 106:8211CrossRefGoogle Scholar
  17. 17.
    Lazzeri M, Selloni A (2001) Stress-driven reconstruction of an oxide surface: the anatase TiO2(001)-(1 × 4) surface. Phys Rev Lett 87:266105CrossRefGoogle Scholar
  18. 18.
    Bonapasta AA, Filippone F (2005) Photocatalytic reduction of oxygen molecules at the (100) TiO2 anatase surface. Surf Sci 577:59CrossRefGoogle Scholar
  19. 19.
    Czekaj I, Piazzesi G, Kröcher O, Wokaun A (2006) DFT modeling of the hydrolysis of isocyanic acid over the TiO2 anatase (101) surface: adsorption of HNCO species. Surf Sci 600:5158CrossRefGoogle Scholar
  20. 20.
    Firment LE (1982) Thermal faceting of the rutile TiO2 (001) surface. Surf Sci 116:205CrossRefGoogle Scholar
  21. 21.
    Kim KS, Barteau MA (1990) Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces. J Catal 125:353CrossRefGoogle Scholar
  22. 22.
    Idriss H, Kim KS, Barteau MA (1991) Structure-activity and structure-selectivity relations for reactions of carboxylic acids on TiO2(001) surfaces. Stud Surf Sci Catal 64:327CrossRefGoogle Scholar
  23. 23.
    Senanayake SD, Idriss H (2006) Photo-catalysis and the origin of life. The synthesis of nucleotides from formamide on TiO2(001) single crystal surfaces. Proc Natl Acad Sci USA 103:1194CrossRefGoogle Scholar
  24. 24.
    Ariga H, Taniike T, Morikawa H, Tero R, Kondoh H, Iwasawa Y (2008) Lattice-work structure of a TiO2(001) surface studied by STM, core level spectroscopy and DFT calculations. Chem Phys Lett 454:350CrossRefGoogle Scholar
  25. 25.
    Valentin C, Tilocca A, Selloni A, Beck TJ, Klust A, Batzill M, Losovyj Y, Diebold U (2005) Adsorption of water on reconstructed Rutile TiO2(011)-(2 × 1): Ti=O double bonds and surface reactivity. J Am Chem Soc 127:9895CrossRefGoogle Scholar
  26. 26.
    Senanayake SD, Waterhouse GIN, Chan ASY, Madey TE, Mullin DR, Idriss H (2007) Probing the formation of surface defects on uranium dioxide thin film using synchrotron radiation. J Phys Chem C 111:7963CrossRefGoogle Scholar
  27. 27.
    Senanayake SD, Rousseau R, Colgrave D, Idriss H (2005) The reaction of water on polycrystalline UO2: pathways to surface and bulk oxidation. J Nucl Mater 342:179CrossRefGoogle Scholar
  28. 28.
    Ellis WP, Schwoebel RL (1968) LEED from surface steps on UO2 single crystals. Surf Sci 11:82CrossRefGoogle Scholar
  29. 29.
    Muggelberg C, Castell MR, Briggs GAD, Goddard DT (1998) The atomic structure of the UO2+x(110) surface and the effects of interstitial oxygen: an elevated-temperature STM study. Surf Sci 402–404:673CrossRefGoogle Scholar
  30. 30.
    Ellis WP, Taylor TN (1980) He+ ion-scattering spectroscopy studies of UO2(hkl) surfaces. Surf Sci 91:409CrossRefGoogle Scholar
  31. 31.
    Willis BTM (1963) Positions of the oxygen atoms in UO2.13. Nature 197:755Google Scholar
  32. 32.
    Castell MR, Dudarev SL, Muggelberg C, Sutton AP, Briggs GAD, Goddard DT (1998) Surface structure and bonding in the strongly correlated metal oxides NiO and UO2. J Vac Sci Technol A 16:1055Google Scholar
  33. 33.
    Hodkin EN, Nicholas MG (1977) Surface and interfacial properties of non-stoichiometric uranium dioxide. J Nucl Mater 67:171CrossRefGoogle Scholar
  34. 34.
    Nikolopoulos P, Nazare S, Thummler F (1977) Surface grain boundary and interfacial energies in UO2 and UO2-Ni. J Nucl Mater 71:89CrossRefGoogle Scholar
  35. 35.
    Tasker PW (1979) The surface properties of uranium dioxide. Surf Sci 78:315CrossRefGoogle Scholar
  36. 36.
    Thompson KA, Ellis WP, Taylor TN, Valone SM, Maggiore CJ (1983) Surface structural determination of UO2(III) using meV ions. Nucl Inst Meth Phys Res 218:475CrossRefGoogle Scholar
  37. 37.
    Taylor TN, Ellis WP (1981) Distorted surface structure on UO2(100). Surf Sci 107:249CrossRefGoogle Scholar
  38. 38.
    Muggelberg C, Castell MR, Briggs GAD, Goddard DT (1999) An STM study of the UO2(001) surface. Appl Surf Sci 142:124CrossRefGoogle Scholar
  39. 39.
    Idriss H, Barteau MA (1994) Characterization of TiO2 surfaces active for novel organic synthesis. Catal Lett 26:123CrossRefGoogle Scholar
  40. 40.
    Lusvardi VS, Barteau MA, Chen JG, Eng J, Frühberger B, Teplyakov A (1998) A NEXAFS investigation of the reduction and reoxidation of TiO2(001). Surf Sci 397:237CrossRefGoogle Scholar
  41. 41.
    Senanayake SD, Idriss H (2004) Water reactions over stoichiometric and reduced UO2(111) single crystal surfaces. Surf Sci 563:135CrossRefGoogle Scholar
  42. 42.
    Senanayake SD, Soon A, Kohlmeyer A, Söhnel T, Idriss H, (2005) Carbon monoxide reaction with UO2(111) single crystal surfaces: A theoretical and experimental study. J Vac Sci Technol A 23:1078Google Scholar
  43. 43.
    Jayaweera PM, Quah EL, Idriss H (2007) Photoreaction of ethanol on TiO2(110) single crystal surface. J Phys Chem C 111:1764CrossRefGoogle Scholar
  44. 44.
    Kim KS, Barteau MA (1990) Reactions of aliphalic alcohols on the {011}-faceted TiO2 (001) surface. J Mol Catal 63:103CrossRefGoogle Scholar
  45. 45.
    Chong SV, Griffiths TR, Idriss H (2000) Ethanol reactions over UO2(111) single crystal. Effect of the Madelung potential on the reaction selectivity. Surf Sci 444:187CrossRefGoogle Scholar
  46. 46.
    Chong SV, Barteau MA, Idriss H (2000) The influence of surface defects on ethanol dehydrogenation versus dehydration on the UO2(111) surface. Catal Today 63:283CrossRefGoogle Scholar
  47. 47.
    Idriss H, Seebauer EG (2000) Ethanol reactions on oxide surfaces. J Mol Catal A Chem 152:201CrossRefGoogle Scholar
  48. 48.
    Idriss H, Seebauer EG (2000) Effect of oxygen electronic polarisability on catalytic reactions over oxides. Catal Lett 66:139CrossRefGoogle Scholar
  49. 49.
    Schulz KH, Cox DF (1993) Oxidation reduction and isomerization of allyl alcohol and 1-propanol over Cu2O(100). J Phys Chem 97:647CrossRefGoogle Scholar
  50. 50.
    Taylor SH, Hutchings GJ, Palacios ML, Lee DF (2003) The partial oxidation of propane to formaldehyde using uranium mixed oxide catalysts. Catal Today 81:171CrossRefGoogle Scholar
  51. 51.
    Harris RH, Boyd VJ, Hutchings GJ, Taylor SH (2002) Water as a promoter of the complete oxidation of volatile organic compounds over uranium oxide catalysts. Catal Lett 78:369CrossRefGoogle Scholar
  52. 52.
    Senanayake SD, Waterhouse GIN, Idriss H, Madey TE (2005) Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces. Langmuir 21:11141CrossRefGoogle Scholar
  53. 53.
    Senanayake SD, Chong SV, Idriss H (2003) The reactions of formaldehyde over the surfaces of uranium oxides. A comparative study between polycrystalline and single crystal materials. Catal Today 85:311Google Scholar
  54. 54.
    Madhavaram H, Idriss H (2002) Carbon efficiency and the surface chemistry of the actinides. Direct formation of furan from acetylene over β-UO3. J Catal 206:155CrossRefGoogle Scholar
  55. 55.
    Madhavaram H, Idriss H (1997) Temperature programmed desorption of ethylene and acetaldehyde on uranium oxides. Evidence of furan formation from ethylene. Stud Surf Sci Catal 110:265CrossRefGoogle Scholar
  56. 56.
    Hedhili MN, Yakshinskiy BV, Madey TE (2000) Interaction of water vapor with UO2(001). Surf Sci 445:512CrossRefGoogle Scholar
  57. 57.
    Shamir N, Tiferet E, Zalkind S, Mintz MH (2006) Interactions of water vapor with polycrystalline uranium surfaces. Surf Sci 600:657CrossRefGoogle Scholar
  58. 58.
    Balooch M, Hamza AV (1996) Hydrogen and water vapor adsorption on and reaction with uranium. J Nucl Mater 230:259CrossRefGoogle Scholar
  59. 59.
    McEachern RJ, Taylor P (1998) A review of the oxidation of uranium dioxide at temperatures below 400°C. J Nucl Mater 254:87CrossRefGoogle Scholar
  60. 60.
    Burrell AK, McCleskey TM, Shukla P, Wang H, Durakiewicz T, Moore DP, Olson CG, Joyce JJ, Ji Q (2007) Controlling oxidation states in uranium oxides through epitaxial stabilization. Adv Mater 19:3559CrossRefGoogle Scholar
  61. 61.
    Idriss H, Kim KS, Barteau MA (1992) Surface-dependent pathways for formaldehyde oxidation and reduction on TiO2(001). Surf Sci 262:113CrossRefGoogle Scholar
  62. 62.
    Idriss H, Kim KS, Barteau MA (1993) Carbon–carbon bond formation via aldolization of acetaldehyde on single crystal and polycrystalline TiO2 surfaces. J Catal 139:119CrossRefGoogle Scholar
  63. 63.
    Hung W-H, Bernasek SL (1996) The adsorption and decomposition of formaldehyde and formic acid on the clean and modified Fe(100) surface. Surf Sci 346:165CrossRefGoogle Scholar
  64. 64.
    Davis JL, Barteau MA (1987) Decarbonylation and decomposition pathways of alcohols on Pd(111). Surf Sci 187:387CrossRefGoogle Scholar
  65. 65.
    Truong CM, Wu M-C, Goodman DW (1993) Adsorption of formaldehyde on nickel oxide studied by thermal programmed desorption and high-resolution electron energy loss spectroscopy. J Am Chem Soc 115:3647CrossRefGoogle Scholar
  66. 66.
    Katahira DA, Moloy KG, Marks TJ (1982) Carbon monoxide activation by organoactinides. Formyl pathways in CO homologation and hydrogenation. Organometallics 1:1723Google Scholar
  67. 67.
    Arnahanjo EC, Protasiewicz H, Lippard SJ (1993) 15 Years of reductive coupling: what have we learned? Acc Chem Res 26:90Google Scholar
  68. 68.
    Kahn BE, Rieke R (1988) Carbonyl coupling reactions using transition metals, lanthanides, and actinides. Chem Rev 88:733CrossRefGoogle Scholar
  69. 69.
    Stahl M, Pidun U, Frenking G (1997) On the mechanism of the McMurry reaction. Angew Chem Int Ed Engl 36:2234CrossRefGoogle Scholar
  70. 70.
    Idriss H, Légaré P, Maire G (2002) Dark and photoreactions of acetates on TiO2(110) single crystal surface. Surf Sci 515:413CrossRefGoogle Scholar
  71. 71.
    Qiu H, Idriss H, Wang Y, Wöll C (2008) Carbon−carbon bond formation on model titanium oxide surfaces: identification of surface reaction intermediates by high-resolution electron energy loss spectroscopy. J Phys Chem C 112:9828CrossRefGoogle Scholar
  72. 72.
    Idriss H, Barteau MA (1996) Selectivity and mechanism shifts in the reactions of acetaldehyde on oxidized and reduced TiO2(001) surfaces. Catal Lett 40:147CrossRefGoogle Scholar
  73. 73.
    Zehr RT, Henderson MA (2008) Acetaldehyde photochemistry on TiO2(110). Surf Sci 602:2232CrossRefGoogle Scholar
  74. 74.
    Idriss H, Pierce KG, Barteau MA (1994) Synthesis of stilbene from benzaldehyde by reductive coupling on TiO2(001) surfaces. J Am Chem Soc 116:3063CrossRefGoogle Scholar
  75. 75.
    Sherrill AB, Idriss H, Barteau MA, Chen JG (2003) Adsorption and reaction of acrolein on titanium oxide single crystal surfaces: coupling versus condensation. Catal Today 85:321CrossRefGoogle Scholar
  76. 76.
    Idriss H, Barteau MA (1994) Reactions of p-benzoquinone on TiO2(001) single-crystal surfaces: oligomerization and polymerization by reductive coupling. Langmuir 10:3693CrossRefGoogle Scholar
  77. 77.
    Chong SV, Idriss H (2001) Reactions of acetaldehyde on UO2(111) single crystal surfaces. Evidence of benzene formation. J Vac Sci Technol A 1933:19Google Scholar
  78. 78.
    Wilson JN, Senanayake SD, Idriss H (2004) Carbon coupling on titanium oxide with surface defects. Surf Sci L231:562Google Scholar
  79. 79.
    Henderson MA, White JM, Uetsukab H, Onishi H (2006) Selectivity changes during organic photooxidation on TiO2: role of O2 pressure and organic coverage. J Catal 238:153CrossRefGoogle Scholar
  80. 80.
    Lyubinetsky I, Yu ZQ, Henderson MA (2007) Direct observation of adsorption evolution and bonding configuration of TMAA on TiO2(110). J Phys Chem C 111:4342CrossRefGoogle Scholar
  81. 81.
    White JM, Szanyi J, Henderson MA (2004) Thermal chemistry of trimethyl acetic acid on TiO2(110). J Phys Chem B 108:3592CrossRefGoogle Scholar
  82. 82.
    Henderson MA (2005) Photooxidation of acetone on TiO2(110): conversion to acetate via methyl radical ejection. J Phys Chem B 109:12062CrossRefGoogle Scholar
  83. 83.
    Zhang Z, Bondarchuk O, Kay BD, White JM, Dohnàlek Z (2007) Direct visualization of 2-butanol adsorption and dissociation on TiO2(110). J Phys Chem C 111:3021CrossRefGoogle Scholar
  84. 84.
    Reztova T, Chang C-H, Koresh J, Idriss H (1999) Dark and photoreactions of ethanol and acetaldehyde over TiO2/carbon molecular sieve fiber. J Catal 185:223CrossRefGoogle Scholar
  85. 85.
    Yu Z, Chuang SSC (2007) In situ IR study of adsorbed species and photo-generated electrons during photo-catalytic oxidation of ethanol on TiO2. J Catal 246:118CrossRefGoogle Scholar
  86. 86.
    Muggli DS, McCue JT, Falconer JT (1998) Mechanism of the photocatalytic oxidation of ethanol on TiO2. J Catal 173:470CrossRefGoogle Scholar
  87. 87.
    Vohs JM, Barteau MA (1989) Dehydration and dehydrogenation of ethanol and 1-propanol on the polar surfaces of zinc oxide. Surf Sci 221:590CrossRefGoogle Scholar
  88. 88.
    Kim KS, Barteau MA (1990) Reactions of aliphatic alcohols on the {011}-facetted TiO2 (001) surface. J Mol Catal 63:103CrossRefGoogle Scholar
  89. 89.
    Gamble L, Jung LS, Campbell CT (1996) Decomposition and protonation of surface ethoxys on TiO2(110). Surf Sci 348:1CrossRefGoogle Scholar
  90. 90.
    Nozaki F, Ohki K (1972) A study of catalysis by uranium oxide and its mixed catalysis, 3. Comparison of uranium oxide catalysts with vanadium oxide, molybdenum oxide and tungsten oxide catalysts for catalytic oxidation of carbon monoxide. Bull Chem Soc Jap 45:9473Google Scholar
  91. 91.
    Ramamoorthy M, Vanderbilt A (1994) First principle calculations of the energetics of TiO2 surfaces. Phys Rev B 49:16721CrossRefGoogle Scholar
  92. 92.
    McGill PR, Idriss H (2008) Ab initio study of surface acid-base reactions. The case of molecular and dissociative adsorption of ammonia on the (011) surface of rutile TiO2, Langmuir 24:97Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of ChemistryThe University of AberdeenAberdeenUK

Personalised recommendations