Role of C and P Sites on the Chemical Activity of Metal Carbides and Phosphides: From Clusters to Single-Crystal Surfaces

  • José A. Rodriguez
  • Francesc Viñes
  • Ping Liu
  • Francesc Illas


Transition metal carbides and phosphides have shown tremendous potential as highly active catalysts. At a microscopic level, it is not well understood how these new catalysts work. Their high activity is usually attributed to ligand or/and ensemble effects. Here, we review recent studies that examine the chemical activity of metal carbides and phosphides as a function of size, from clusters to extended surfaces, and metal/carbon or metal/phosphorous ratio. These studies reveal that the C and P sites in these compounds cannot be considered as simple spectators. They moderate the reactivity of the metal centers and provide bonding sites for adsorbates.


Metal Carbide Electron Localization Function Density Functional Calculation Transition Metal Carbide Early Transition Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen JG (1996) Carbide and nitride overlayers on early transition metal surfaces preparation, characterization, and reactivities. Chem Rev 96:1477CrossRefGoogle Scholar
  2. 2.
    Liu P, Rodriguez JA (2004) Effects of carbon on the stability and chemical performance of transition metal carbides: A density functional study. J Chem Phys 120:5414CrossRefGoogle Scholar
  3. 3.
    Viñes F, Sousa C, Liu P, Rodriguez JA, Illas F (2005) A systematic density functiona theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. J Chem Phys 122:174709CrossRefGoogle Scholar
  4. 4.
    Levy RB, Boudart M (1973) Platinum-like behavior of tungsten carbide in surface catalysis. Science 181:547CrossRefGoogle Scholar
  5. 5.
    Claridge JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, Green MLH (1998) New catalysts for the conversion of methane to synthesis gas: Molybdenum and tungsten carbide. J Catal 180:85CrossRefGoogle Scholar
  6. 6.
    Brungs AJ, York APE, Green MLH (1999) Comparison of the group V and VI transition metal carbides for methane dry teforming and thermodynamic prediction of their relative stabilities. Catal Lett 57:65CrossRefGoogle Scholar
  7. 7.
    Chianelli RR, Berhault G (1999) Symmetrical synergism and the role of carbon in transition metal sulfide catalytic materials. Catal Today 53:357CrossRefGoogle Scholar
  8. 8.
    Liu P, Rodriguez JA (2003) Interaction of sulfur dioxide with titanium-carbide nanoparticles and surfaces: A density functional study. J Chem Phys 119:10895CrossRefGoogle Scholar
  9. 9.
    Oyama ST (1992) Preparation and catalytic properties of transition-metal carbides and nitrides. Catal Today 15:179CrossRefGoogle Scholar
  10. 10.
    Rodriguez JA, Dvorak J, Jirsak T (2000) Chemistry of SO2, H2S, and CH3SH on carbide-modified Mo(110) and Mo2C powders: Photoemission and XANES studies. J Phys Chem B 104:11515CrossRefGoogle Scholar
  11. 11.
    St Clair TP, Oyama ST, Cox DF (2002) Adsorption and reaction of thiophene on α-Mo2C(0001). Surf Sci 511:294CrossRefGoogle Scholar
  12. 12.
    Liu P, Rodriguez JA, Muckerman J (2004) Desulfurization of SO2 and thio-phene on surfaces and nanoparticles of molybdenum carbide: Unexpected ligand and steric effects. J Phys Chem B 108:15662CrossRefGoogle Scholar
  13. 13.
    Toth LE (ed) (1971) Transition metal carbides and nitrides In: Refractory materials, vol 7. Academic, New YorkGoogle Scholar
  14. 14.
    Storms EK (1967) The refractory carbides. Academic, New YorkGoogle Scholar
  15. 15.
    Liu P, Rodriguez JA, Asakura T, Gomes J, Nakamura K (2005) Desulfurization reactions on Ni2P(001) and α-Mo2C(001) surfaces: Complex role of P and C sites. J Phys Chem B 109:4575CrossRefGoogle Scholar
  16. 16.
    Liu P, Rodriguez JA, Muckerman JT (2004) The chemical activity of metal compound nanoparticles: Importance of electronic and steric effects in M8C12 (M = Ti, V, Mo) metcars. J Chem Phys 121:10321CrossRefGoogle Scholar
  17. 17.
    Liu P, Rodriguez JA, Muckerman JT (2004) The Ti8C12 metcar: A new model catalyst for hydrodesulfurization. J Phys Chem B 108:18796CrossRefGoogle Scholar
  18. 18.
    Sajkowski DJ, Oyama ST (1996) Catalytic hydrotreating by molybdenum carbide and nitride: Unsupported Mo2N and Mo2C/Al2O3 Appl. Catal A 134:339CrossRefGoogle Scholar
  19. 19.
    Frantz P, Didziulis SV (1998) Detailed spectroscopic studies of oxygen on metal carbide surfaces. Surf Sci 412/413:384Google Scholar
  20. 20.
    Souda R, Aizawa T, Otani S, Ishizawa Y (1991) Oxygen-chemisorption on transition-metal carbide (100) surfaces studied by x-ray photoelectron-spectroscopy and low-energy He+ scattering. Surf Sci 256:19CrossRefGoogle Scholar
  21. 21.
    Edamoto K, Anazawa T, Miyazaki E, Otani S (1993) Chemisorption state of atomic oxygen on TiC(100) surface - angle-resolved photoemission-study. Surf Sci 287:667CrossRefGoogle Scholar
  22. 22.
    Johansson LI, Johansson HI, Hakansson KL (1993) Surface-Shifted N 1 S And C 1 S Levels on The (100) Surface of TIN and TIC. Phys Rev B 48:14520CrossRefGoogle Scholar
  23. 23.
    Rodriguez JA, Liu P, Dvorak J, Jirsak T, Gomes J, Takahashi Y, Nakamura K (2004) the interaction of oxygen with TiC(001): PHOTOEMISSION and first-principles studies. J Chem Phys 121:465CrossRefGoogle Scholar
  24. 24.
    Rodriguez JA, Liu P, Gomes J, Nakamura K, Viñes F, Sousa C, Illas F (2005) Interaction of oxygen with ZrC(001) and VC(001): Photoemission and first-principles studies. Phys Rev B 72:075427CrossRefGoogle Scholar
  25. 25.
    Zhang YF, Viñes F, Xu YJ, Li Y, Li JQ, Illas F (2006) Role of kinetics in the selective surface oxidations of transition metal carbides. J Phys Chem B 110:15454CrossRefGoogle Scholar
  26. 26.
    Viñes F, Sousa C, Liu P, Rodriguez JA, Illas F (2007) Density functional study of the adsorption of atomic oxygen on the (001) surface of early transition-metal carbides. J Phys Chem C 111:1307CrossRefGoogle Scholar
  27. 27.
    Viñes F, Sousa C, Illas F, Liu P, Rodriguez JA (2007) A systematic density functional study of molecular oxygen adsorption and dissociation on the (001) surface of group IV, V and VI transition metal carbides. J Phys Chem C 111:16982–16989Google Scholar
  28. 28.
    Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular-systems. J Chem Phys 92:5397CrossRefGoogle Scholar
  29. 29.
    Rodriguez JA, Hrbek J (1999) Interaction of sulfur with well-defined metal and oxide surfaces: Unraveling the mysteries behind catalyst poisoning and desulfurization. Acc Chem Res 32:719CrossRefGoogle Scholar
  30. 30.
    Furimsky E (2003) Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl Catal A: Gen 240:1CrossRefGoogle Scholar
  31. 31.
    Diaz B, Sawhill SJ, Bale DH, Main R, Phillips DC, Korlann S, Self R, Bussell ME (2003) Hydrodesulfurization over supported monometallic, bimetallic and promoted carbide and nitride catalysts. Catal Today 86:191CrossRefGoogle Scholar
  32. 32.
    Layman KA, Bussell ME (2004) Infrared spectroscopic investigation of thiophene adsorption on silica-supported nickel phosphide catalysts. J Phys Chem B 108:15791CrossRefGoogle Scholar
  33. 33.
    Rodriguez JA, Kim JY Hanson JC, Sawhill SJ, Bussell ME (2003) Physical and chemical properties of MoP, Ni2P, and MoNiP hydrodesulfurization catalysts: Time-resolved X-ray diffraction, density functional, and hydrodesulfurization activity studies. J Phys Chem B 107:6276Google Scholar
  34. 34.
    Kanama D, Oyama ST, Otani S, Cox DF (2004) Photoemission and LEED Characterization of Ni2P(0001). Surf Sci 552:8CrossRefGoogle Scholar
  35. 35.
    Rodriguez JA, Liu P, Dvorak J, Jirsak T, Gomes J, Takahashi Y, Nakamura K (2004) Adsorption of sulfur on tic(001): photoemission and first-principles studies. Phys Rev B 69:115414CrossRefGoogle Scholar
  36. 36.
    Liu P, Lightstone JM, Patterson MJ, Rodriguez JA, Muckerman JT, White MG (2006) Gas-phase Interaction of thiophene with Ti8C12+ and Ti8C12 Metcar Clusters. J Phys Chem B 110:7449CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • José A. Rodriguez
    • 1
  • Francesc Viñes
    • 1
  • Ping Liu
    • 1
  • Francesc Illas
    • 1
  1. 1.Department of ChemistryBrookhaven National LaboratoryUptonUSA

Personalised recommendations