Chiral Expression by Organic Architectures at Metal Surfaces: the Role of Both Adsorbate and Surface in Inducing Asymmetry



The manifestation of chirality at surfaces has attracted much attention in recent years. In this review, some of the main features of chiral endowments by complex organic molecules at defined metal surfaces are reviewed. Detailed surface spectroscopic data have enabled a hierarchy of chiral expressions to be delineated from point group chirality expressed by local chiral motifs, to space group chirality in which these motifs act as building blocks which self-assemble into organised chiral structures, to deeper propagation of chirality into the metal leading to chiral reconstructions. Chiral endowments by both chiral and achiral molecules is discussed alongside the implications for progressing chirality from the local to the global level.


Succinic Acid Scanning Tunnelling Microscopy Density Functional Theory Calculation Tartaric Acid Scanning Tunnelling Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sheldon RA (1993) Industrial synthesis of optically active compounds, chirotechnology. Dekker, New YorkGoogle Scholar
  2. 2.
    Dubois V, Jannes G (eds) (1995) Chiral reactions in heterogeneous catalysis. Plenum, New York, p. 33Google Scholar
  3. 3.
    Baiker A, Blaser HU (1997) In: Ertl GH, Knoezinger H, Weinheim J (eds) Handbook of heterogeneous catalysis, Vol 5. Wiley-VHC, New York, p. 2442Google Scholar
  4. 4.
    McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on ‘chiral’ metal surfaces. Langmuir 12:2483CrossRefGoogle Scholar
  5. 5.
    Besson M, Debleqc F, Gallezot P, Neto S, Pinel C (2000) Diastereoselective heterogeneous catalytic hydrogenation of 2-methyl nicotinic acid using pyroglutamate chiral auxiliary. C Chem Eur J 6:949CrossRefGoogle Scholar
  6. 6.
    Izumi Y (1983) Modified raney nickel (MRNi) catalyst: Heterogeneous enantio-differentiating (asymmetric) catalyst. Adv Catal 32:215CrossRefGoogle Scholar
  7. 7.
    Tai A, Harada T (1986) Asymmetrically modified nickel catalysts. In: Iwasawa Y (ed) Tailored metal catalysts. Reidel, Tokyo, p. 265Google Scholar
  8. 8.
    Orito Y, Imai S, Niwa J (1980) J Chem Soc Jpn 1:670Google Scholar
  9. 9.
    Webb G, Wells PB (1992) Asymmetric hydrogenation. Catal Today 12:319CrossRefGoogle Scholar
  10. 10.
    Blaser HU, Jalett HP, Muller M, Studer M (1997) Enantioselective hydrogenation of α-Ketoesters using cinchona modified platinum catalysts and related systems. Catal Today 37:441CrossRefGoogle Scholar
  11. 11.
    Ortega Lorenzo M, Haq S, Murray P, Raval R, Baddeley CJ (1999) Creating chiral surface for enantioselective heterogeneous catalysis: (R, R)-tartaric acid on Cu(110). J Phys Chem B 103:10661CrossRefGoogle Scholar
  12. 12.
    Ortega Lorenzo M, Baddeley CJ, Muryn C, Raval R (2000) Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules. Nature 404:376CrossRefGoogle Scholar
  13. 13.
    Ortega Lorenzo M, Humblot V, Murray P, Baddeley CJ, Haq S, Raval R (2002) Chemical transformations, molecular transport and kinetic barriers in creating the chiral phase of (R, R)-tartaric acid on Cu(110). J Catal 205:123CrossRefGoogle Scholar
  14. 14.
    Raval R (2000) Assembling molecular guidance systems for heterogeneous enantioselective catalysis. CATTECH 4:1Google Scholar
  15. 15.
    Raval R (2003) Chiral expressions at metal surfaces. Curr Opin Solid State Mater Sci 7:67CrossRefGoogle Scholar
  16. 16.
    Barlow S, Raval R (2003) Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf Sci Rep 50:201CrossRefGoogle Scholar
  17. 17.
    Barlow S, Raval R (2008) Nanoscale insights in the creation and transfer of chirality in amino acid monolayers at defined metal surfaces. Curr Opin Colloid Inter Sci 13:65CrossRefGoogle Scholar
  18. 18.
    Gomes JRB, Gomes JANF (1999) Absorption of the formate species on copper surfaces: A DFT study. Surf Sci 432:279Google Scholar
  19. 19.
    Barbosa LAMM, Sautet P (2001) Stability of chiral domains produced by adsorption of tartaric acid isomers on the Cu(110) surface: A periodic density functional theory study. J Am Chem Soc 123:6639CrossRefGoogle Scholar
  20. 20.
    Fasel R, Wider J, Quitmann C, Ernst K-H, Greber T (2004) Determination of the absolute chirality of adsorbed molecules. Angew Chem Int Ed 116:2913Google Scholar
  21. 21.
    Hernse CGM, Van Bavel AP, Jansen APJ, Barbosa LAMM, Sautet P, Van Santen RA (2004) Formation of chiral domains for tartaric acid on Cu(110): A combined DFT and kinetic Monte Carlo study. J Phys Chem B 108:11035Google Scholar
  22. 22.
    Humblot V, Haq S, Muryn C, Hofer WA, Raval R (2002) From local adsorption stresses to chiral surfaces: (R, R)-tartaric acid on Ni(110), J. Am Chem Soc 124:503CrossRefGoogle Scholar
  23. 23.
    Humblot V, Haq S, Muryn C, Raval R (2004) (R, R)-tartaric acid on Ni(110): The dynamic nature of chiral adsorption motifs. J Catal 228:130CrossRefGoogle Scholar
  24. 24.
    Hofer WA, Humblot V, Raval R (2004) Conveying chirality onto the electronic structure of achiral metals: (R,R)-Tartaric acid on nickel. Surf Sci 554:141Google Scholar
  25. 25.
    Switzer JA, Kothari HM, Poizot P, Nakanishi S, Bohannan EW (2003) Enantiospecific electrodeposition of a chiral catalyst. Nature 425:490CrossRefGoogle Scholar
  26. 26.
    Humblot V, Ortega Lorenzo M, Baddeley CJ, Haq S, Raval R (2004) Local and global chirality at surfaces: succinic acid versus tartaric acid on Cu(110). J Am Chem Soc 126:6460CrossRefGoogle Scholar
  27. 27.
    Humblot V, Raval R (2005) Chiral metal surfaces from the adsorption of chiral and achiral molecules. Appl Surf Sci 241:150CrossRefGoogle Scholar
  28. 28.
    Liu N, Haq S, Darling G, Raval R (2008) in preparationGoogle Scholar
  29. 29.
    Liu N, Haq S, Darling G, Raval R (2007) Direct visualisation of enantiospecific substitution of chiral guest molecules into heterochiral molecular assemblies at surfaces. Angew Chem Int Ed 46:1CrossRefGoogle Scholar
  30. 30.
    De Feyter S, De Schryver FC (2003) Two-dimensional supramolecular self-assembly probed by scanning tunneling microscopy. Chem Soc Rev 32:393Google Scholar
  31. 31.
    Ernst K-H (2006) Supramolecular surface chirality. Top Curr Chem 265:209Google Scholar
  32. 32.
    Perez-Garcia L, Amabilino DB (2007) Spontaneous resolution, whence and wither: from enantiomorphic solids to chiral liquid crystals, monolayers and macro- and supramolecular polymers and assemblies. Chem Soc Rev 36:941CrossRefGoogle Scholar
  33. 33.
    Ma Z, Zaera F Chiral, Modification of Catalytic Surfaces: In Design of Heterogeneous Catalysts. In: Ozkan US (ed) Design of heterogeneous catalysis: New approaches based on synthesis, characterization, and modelling. Wiley-VCH, New York. Google Scholar
  34. 34.
    Blaser HJ (1991) Enantioselective synthesis using chiral heterogeneous catalysts. Tetrahedron: Asymmetry 2:843CrossRefGoogle Scholar
  35. 35.
    Baiker A (1998) Chiral catalysis on solids. Curr Opin Solid State Mater Sci 3:86CrossRefGoogle Scholar
  36. 36.
    Keane MA, Webb G (1992) The enantioselective hydrogenation of methyl acetoacetate over supported nickel catalysts I. The modification procedure. J Catal 136:1Google Scholar
  37. 37.
    Keane MA (1997) Interaction of optically active tartaric acid with a nickel-silica catalyst: role of both the modification and reaction in determining enantioselectivity. Langmuir 13:41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Surface Science Research Centre and Department of ChemistryUniversity of LiverpoolLiverpoolUK

Personalised recommendations