Enantioselectivity on Naturally Chiral Metal Surfaces

  • Andrew J. Gellman


Enantioselective heterogeneous catalysis requires surfaces with structures that are chiral at the atomic level. It is possible to obtain naturally chiral surfaces from crystalline inorganic materials with chiral bulk structures. It is also possible to create naturally chiral surfaces from achiral materials by exposing surfaces that have atomic structures with no mirror symmetry planes oriented perpendicular to the surface. Over the past decade there have been a number of experimental and theoretical demonstrations of the enantiospecific physical phenomena and surface chemistry that arise from the adsorption of chiral organic compounds on the naturally chiral, high Miller index places of metals.


Step Edge Temperature Program Desorption Spectrum Stereographic Triangle Kink Site Chiral Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author’s work in the field of naturally chiral surfaces has been supported by the National Science Foundation, the US Department of Energy and by Merck Corp. The author is also indebted to his collaborators: D.S. Sholl, E.C. Sykes, S.S. Perry, and P.A. Salvador. The work on this problem in his research group has been performed by C.F. McFadden, P. Cremer, J.D. Horvath, A.J. Koritnik, Y. Huang, V. Pushkarev, L. Baker, and W.C. Cheong.


  1. 1.
    Thayer AM (2007) Centering on chirality. In: C&E News. p. 11Google Scholar
  2. 2.
    Mallat T, Orglmeister E, Baiker A (2007) Asymmetric catalysis at chiral metal surfaces. Chem Rev 107:4863CrossRefGoogle Scholar
  3. 3.
    Soai K, Osanai S, Kadowaki K, Yonekubo S, Shibata T, Sato I (1999) d- and l-quartz-promoted highly enantioselective synthesis of a chiral organic compound. J Am Chem Soc 121:11235CrossRefGoogle Scholar
  4. 4.
    Ahuja S (ed) (2000) Chiral separations by chromatography. Oxford University Press, Washington, DCGoogle Scholar
  5. 5.
    Beesley TE, Scott RPW (1998) Chiral Chromatography. In: Scott RPW, Simpson CF, Katz ED (eds) Separation Science Series. Wiley, New YorkGoogle Scholar
  6. 6.
    Halasyamani PS, Poeppelmeier KR (1998) Noncentrosymmetric oxides. Chem Mater 10:2753CrossRefGoogle Scholar
  7. 7.
    Hazen RM, Filley TR, Goodfriend GA (2001) Selective adsorption of l- and d-amino acids on calcite: Implications for biochemical homochirality. Proc Natl Acad Sci U S A 98:5487CrossRefGoogle Scholar
  8. 8.
    Hazen RM, Sholl DS (2003) Chiral selection on inorganic crystalline surfaces. Nat Mater 2:367CrossRefGoogle Scholar
  9. 9.
    Jenkins SJ, Pratt SJ (2007) Beyond the surface atlas: A roadmap and gazetteer for surface symmetry and structure. Surf Sci Rep 62:373CrossRefGoogle Scholar
  10. 10.
    Pratt SJ, Jenkins SJ, King DA (2005) The symmetry and structure of crystalline surfaces. Surf Sci 585:L159CrossRefGoogle Scholar
  11. 11.
    Sholl DS, Asthagiri A, Power TD (2001) Naturally chiral metal surfaces as enantiospecific adsorbents. J Phys Chem B 105:4771CrossRefGoogle Scholar
  12. 12.
    McFadden CF, Cremer PS, Gellman AJ (1996) Adsorption of chiral alcohols on “chiral’’ metal surfaces. Langmuir 12:2483CrossRefGoogle Scholar
  13. 13.
    van Hove MA, Somorjai GA (1980) New Microfacet Notation for High-Miller-Index Surfaces of Cubic Materials with Terrace, Step and Kink Structures. Surf Sci 92:489CrossRefGoogle Scholar
  14. 14.
    Ahmadi A, Attard G, Feliu J, Rodes A (1999) Surface reactivity at “chiral” platinum surfaces. Langmuir 15:2420CrossRefGoogle Scholar
  15. 15.
    Attard GA, Ahmadi A, Feliu J, Rodes A, Herrero E, Blais S, Jerkiewicz G (1999) Temperature effects in the enantiomeric electro-oxidation of d- and l-glucose on Pt{643}(S). J Phys Chem B 103:1381CrossRefGoogle Scholar
  16. 16.
    Zhao XY, Perry SS (2004) Ordered adsorption of ketones on Cu(643) revealed by scanning tunneling microscopy. J Mol Catal A: Chem 216:257CrossRefGoogle Scholar
  17. 17.
    Power TD, Asthagiri A, Sholl DS (2002) Atomically detailed models of the effect of thermal roughening on the enantiospecificity of naturally chiral platinum surfaces. Langmuir 18:3737CrossRefGoogle Scholar
  18. 18.
    Giesen M, Dieluweit S (2004) Step dynamics and step-step interactions on the chiral Cu(5, 8, 90) surface. J Mol Catal A: Chem 216:263CrossRefGoogle Scholar
  19. 19.
    Image provided courtesy of C. E. Sykes.Google Scholar
  20. 20.
    Horvath J, Kamakoti P, Koritnik A, Sholl DS, Gellman AJ (2004) Enantioselective separation on a naturally chiral surface. J Am Chem Soc 126:14998Google Scholar
  21. 21.
    Horvath JD, Baker L, Gellman AJ (2008) Enantiospecific orientation of R-3-methylcyclohexanone on the chiral Cu(643)R&S surfaces. J Phys Chem C 112:7637CrossRefGoogle Scholar
  22. 22.
    Horvath JD, Gellman AJ (2002) Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J Am Chem Soc 124:2384CrossRefGoogle Scholar
  23. 23.
    Gellman AJ to be published.Google Scholar
  24. 24.
    Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203CrossRefGoogle Scholar
  25. 25.
    Lin JL, Teplyakov AV, Bent BE (1996) Effects of alkyl chain structure on carbon–halogen bond dissociation and β-hydride elimination by alkyl halides on a Cu(100) surface. J Phys Chem 100:10721CrossRefGoogle Scholar
  26. 26.
    Rampulla DM, Francis AJ, Knight KS, Gellman AJ (2006) Enantioselective surface chemistry of R-2-bromobutane on Cu(643)(R&S) and Cu(531)(R&S). J Phys Chem B 110:10411CrossRefGoogle Scholar
  27. 27.
    Rampulla DM, Gellman AJ (2006) Enantioselective decomposition of chiral alkyl bromides on Cu(643)(R&S): Effects of moving the chiral center. Surf Sci 600:2823CrossRefGoogle Scholar
  28. 28.
    Power TD, Sholl DS (1999) Enantiospecific adsorption of chiral hydrocarbons on naturally chiral Pt and Cu surfaces. J Vac Sci Technol A 17:1700Google Scholar
  29. 29.
    Power TD, Sholl DS (2002) Effects of surface relaxation on enantiospecific adsorption on naturally chiral Pt surfaces. Top Catal 18:201CrossRefGoogle Scholar
  30. 30.
    Bhatia B, Sholl DS (2005) Enantiospecific chemisorption of small molecules on intrinsically chiral Cu surfaces. Angew Chem Int Ed 44:7761CrossRefGoogle Scholar
  31. 31.
    Rankin RB, Sholl DS (2006) Structures of dense glycine and alanine adlayers on chiral Cu(3, 1, 17) surfaces. Langmuir 22:8096CrossRefGoogle Scholar
  32. 32.
    Gellman AJ, Horvath JD, Buelow MT (2001) Chiral single crystal surface chemistry. J Mol Catal A: Chem 167:3CrossRefGoogle Scholar
  33. 33.
    Street SC, Gellman AJ (1996) Quantitative adsorbate orientation from vibrational spectra: Ethoxides on Cu(111). J Chem Phys 105:7158CrossRefGoogle Scholar
  34. 34.
    Street SC, Gellman AJ (1997) FT-IRAS of adsorbed alkoxides: 1-propoxide on Cu(111). Surf Sci 372:223CrossRefGoogle Scholar
  35. 35.
    Greber T, Sljivancanin Z, Schillinger R, Wider J, Hammer B (2006) Chiral recognition of organic molecules by atomic kinks on surfaces. Phys Rev Lett 96:056103Google Scholar
  36. 36.
    Zhao XY (2000) Fabricating homochiral facets on Cu(001) with L-lysine. J Am Chem Soc 122:12584CrossRefGoogle Scholar
  37. 37.
    Zhao XY, Zhao RG, Yang WS (2000) Scanning tunneling microscopy investigation of L-lysine adsorbed on Cu(001). Langmuir 16:9812CrossRefGoogle Scholar
  38. 38.
    Chen Q, Richardson NV (2003) Surface facetting induced by adsorbates. Prog Surf Sci 73:59CrossRefGoogle Scholar
  39. 39.
    Schunack M, Laegsgaard E, Stensgaard I, Johannsen I, Besenbacher F (2001) A chiral metal surface. Angew Chem Int Ed 40:2623CrossRefGoogle Scholar
  40. 40.
    Schunack M, Petersen L, Kuhnle A, Laegsgaard E, Stensgaard I, Johannsen I, Besenbacher F (2001) Anchoring of organic molecules to a metal surface: HtBDC on Cu(110). Phys Rev Lett 86:456CrossRefGoogle Scholar
  41. 41.
    Francis AJ, Koritnik AJ, Gellman A, Salvador PA (2007) Chiral surfaces and metal/ceramic heteroepitaxy in the Pt/SrTiO3(621) system. Surf Sci 601:1930CrossRefGoogle Scholar
  42. 42.
    Francis AJ, Salvador PA (2004) Chirally oriented heteroepitaxial thin films grown by pulsed laser deposition: Pt(621) on SrTiO3(621). J Appl Phys 96:2482CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations