Skip to main content

Catalysis at Bimetallic Electrochemical Interfaces

  • Chapter
  • First Online:
Model Systems in Catalysis

Abstract

The need to understand the key structure/composition relationships governing the electrocatalytic behavior of metal surfaces continues to motivate fundamental studies of surface processes at the solid-liquid interfaces. Although the field is still in its infancy, a great deal is already known and trends are beginning to emerge that give new insight into the true relationship between the surface structure/composition and electrocatalytic activity. In this chapter, we will describe how by systematic variation of surface crystallography and/or surface composition of bimetallic surfaces, very important electrocatalytic trends are delineated. Structure/composition-function relationships are established by utilizing in situ surface-sensitive probes and vibrational spectroscopy, which in combination with ex situ ultrahigh vacuum (UHV) techniques and classical electrochemical methods, provide a link between the macroscopic kinetic rate of the reaction and the microscopic properties at the electrified metal-solution interface. The preponderance of electrocatalytic reactions discussed in this chapter are those related to the development of polymer electrolyte membrane fuel cell technology, viz. the oxygen reduction reaction, hydrogen reaction, and oxidation of COb. We demonstrate that the ability to make a controlled and well-characterized arrangement of atoms on the surface and/or the near-surface region, heralds a new era of advances in our knowledge of electrochemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hubbard AT (1988) Electrochemistry at well-characterized surfaces. Chem Rev 88:633

    Article  CAS  Google Scholar 

  2. Ross PN Jr (1982) In: Vanselow R, Howe R (eds) Chemistry and physics of solid surfaces IV. Springer, Berlin, pp 173–201

    Google Scholar 

  3. Samant MG, Toney MF, Borges GL, Blum L, Melroy OR (1988) Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode–electrolyte interface. J Phys Chem 92:220

    Article  CAS  Google Scholar 

  4. Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65:1466

    Article  CAS  Google Scholar 

  5. Tidswell IM, Markovic NM, Ross PN (1993) Potential dependent surface relaxation of the Pt(001)/electrolyte interface. Phys Rev Lett 71:1601

    Article  CAS  Google Scholar 

  6. Lucas C, Markovic NM, Ross PN (1996) Surface structure at the Pt(110)/electrolyte interface. Phys Rev Lett 77:4922

    Article  CAS  Google Scholar 

  7. Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51:109

    Article  CAS  Google Scholar 

  8. Itaya K (1998) In-situ scanning tunneling microscopy in electrolyte solutions. Prog Surf Sci 58:121

    Article  CAS  Google Scholar 

  9. Bard AJ, Fan FF, Pierce DT, Unwin PR, Wipf DO, Zhou F (1991) Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254:68

    Article  CAS  Google Scholar 

  10. Somorjai GA (1993) Introduction to surface chemistry and catalysis. Wiley, New York

    Google Scholar 

  11. Ross PN Jr (1998) In: Lipkowski J, Ross PN Jr (eds) Electrocatalysis. Wiley, New York, pp 43–74

    Google Scholar 

  12. Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55:271

    Article  CAS  Google Scholar 

  13. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117

    Article  CAS  Google Scholar 

  14. Gauthier Y (2001) Pt-metal alloy surfaces: systematic trends. Surf Rev Lett 3:1663

    Article  Google Scholar 

  15. Stamenkovic V, Schmidt TJ, Markovic NM, Ross PN Jr (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reaction on well defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106:11970

    Article  CAS  Google Scholar 

  16. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J Electroanal Chem (Lausanne Switz) 554:191

    Article  Google Scholar 

  17. Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) A study of electronic structures of Pt3M (M=Ti, V, Cr, Fe, Co, Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123:204717

    Article  Google Scholar 

  18. Gasteiger HA, Ross PN, Cairns EJ (1993) LEIS and AES on sputtered and annealed polycrystalline Pt-Ru bulk alloys. Surf Sci 293:67

    Article  CAS  Google Scholar 

  19. Niehus H, Heiland W, Taglauer E (1993) Low energy ion scattering at surfaces. Surf Sci Rep 17:213

    Article  CAS  Google Scholar 

  20. Brongersma HH, Draxler M, de Ridder M, Bauer P (2007) Surface composition analysis by low-energy ion scattering. Surf Sci Rep 62:63

    Article  CAS  Google Scholar 

  21. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) The effect of surface composition on electronic structure, stability and electrochemical properties of Pt-transition metal alloys; Pt-skin vs Pt-skeleton surfaces. J Am Chem Soc 137:1

    Google Scholar 

  22. Campbell CT (1990) Bimetallic surface chemistry. Annu Rev Phys Chem 41:775

    Article  CAS  Google Scholar 

  23. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493

    Article  CAS  Google Scholar 

  24. Thiel PA, Estrup PJ (1995) In: Hubbard AT (ed) The handbook of surface imaging and visualization. CRC, Boca Raton, FL

    Google Scholar 

  25. Hammer B, Norskov JK (1997) In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films. Kluwer, Dordrecht, pp 285–351

    Google Scholar 

  26. Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319

    Article  CAS  Google Scholar 

  27. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810

    Article  CAS  Google Scholar 

  28. Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN (2005) Electronic structure of Pd thin films on Re(0001) studied by high-resolution core-level and valence-band photoemission. Phys Rev B 71:115420–115426

    Article  Google Scholar 

  29. Stamenkovic VR, Mun BS, Arenz BSM, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic surfaces. Nat Mater 6:241

    Article  CAS  Google Scholar 

  30. Norskov JK, Kitchin JR, Bligaard JR, Joussen T (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886

    Article  CAS  Google Scholar 

  31. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed Engl 45:1

    Article  Google Scholar 

  32. Campbell CT, Rodriguez JA, Goodman DW (1992) Chemical and electronic properties of ultrathin metal films: the Pd/Re(0001) and Pd/Ru(0001) systems. Phys Rev B 46:7077

    Article  CAS  Google Scholar 

  33. Han M, Mrozek P, Wieckowski A (1993) X-ray photoelectron spectroscopy and auger electron spectroscopy study of ultrathin palladium films on a Pt(111) substrate. Phys Rev B 48:8329

    Article  CAS  Google Scholar 

  34. Hammer B, Morikawa Y, Norskov JK (1996) CO chemisorption at metal surfaces and overlayers. Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  35. Biberian JP, Somorjai GA (1979) Surface structures of metallic monolayers on metal crystal surfaces. J Vac Sci Tech 16:2073

    Article  CAS  Google Scholar 

  36. Bardi U, Dahlgren D, Ross PN Jr (1986) J Catal 100:196

    Google Scholar 

  37. Campbell CT (1998) Applications of surface analytical techniques to the characterization of catalytic reactions. J Vac Sci Tech 6:1108

    Google Scholar 

  38. Bardi U, Atrei A, Rovida G, Ross PN (1991) Structure of the cobalt oxide layer formed by low-pressure oxidation of the Pt80Co20(100) surfaces – a study by LEED, LEIS, and XPS. Surf Sci 251:727

    Article  Google Scholar 

  39. Bardi U, Atrei A, Zanazzi E, Rovida G, Ross PN Jr (1990) Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vacuum 41:437

    Article  CAS  Google Scholar 

  40. Atrei A, Bardi U, Rovida G (1997) Structure and composition of the titanium oxide layers formed by low-pressure oxidation of the Ni94Ti6(110) surface. Surf Sci 391:216

    Article  CAS  Google Scholar 

  41. Atrei A, Bardi U, Tarducci C, Rovida G (2002) Composition and structure of ultrathin vanadium oxide layers deposited on SnO2(110). Surf Sci 513:149

    Article  CAS  Google Scholar 

  42. Caffio M, Atrei A, Bardi U, Rovida G (2005) Growth mechanism and structure of nickel deposited on Ag(001). Surf Sci 588:135

    Article  CAS  Google Scholar 

  43. Attard GA, Bannister A (1991) The electrochemical behaviour of irreversibly adsorbed palladium on Pt(111) in acid media. J Electroanal Chem (Lausanne Switz) 300:467

    Article  CAS  Google Scholar 

  44. Feliu JM, Alvarez B, Climent V, Rodes A (2002) Electrochemical properties of Pd/Pt(111) adlayers. In: Soriaga MP (ed) Thin films. Kluwer, Dordrecht, pp 37–52

    Google Scholar 

  45. Alvarez B, Climent V, Rodes A, Feliu JM (2001) Anion adsorption on Pd-Pt(111) electrodes in sulfuric acid solution. J Electroanal Chem (Lausanne Switz) 497:125–138

    Article  CAS  Google Scholar 

  46. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed Engl 44:2132

    Article  CAS  Google Scholar 

  47. Attard GA, Price R, Alakl A (1995) Electrochemical and ultra-high vacuum characterization of rhodium on Pt(111) – a temperature dependant growth mode. Surf Sci 335:52

    Article  CAS  Google Scholar 

  48. Alvarez B, Climent V, Feliu JM, Aldaz A (2000) Determination of different local potentials of zero charge of a Pd-Au(111) heterogeneous surface. Electrochem Comm 2:427

    Article  CAS  Google Scholar 

  49. Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22:10409

    Article  CAS  Google Scholar 

  50. Christensen A, Stoltze P, Norskov JK (1995) Size dependence of phase separation in small bimetallic clusters. J Phys Condens Matter 7:1047

    Article  CAS  Google Scholar 

  51. Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2003) Electrooxidation of H2, CO and H2/CO on well-characterized Au(111)-Pd surface alloy. Electrochim Acta 48:3823

    Article  CAS  Google Scholar 

  52. Christensen A, Ruban AV, Stolze P, Jacobsen KW, Skriver HL, Norskov JK, Besenbacher F (1997) Phase diagrams for surface alloys. Phys Rev B 56:5822

    Article  CAS  Google Scholar 

  53. Ruban AV, Skriver HL, Norskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990

    Article  Google Scholar 

  54. Clavilier J, Llorca MJ, Feliu JM, Aldaz A (1991) Preliminary study of the electrochemical adsorption behaviour of a palladium modified Pt(111) electrode in the whole range of coverage. J Electroanal Chem (Lausanne Switz) 310:429

    Article  CAS  Google Scholar 

  55. Climent V, Markovic NM, Ross PN (2000) Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J Phys Chem B 104:3116

    Article  CAS  Google Scholar 

  56. Ross PN, Wagner FT (1984) In: Gerischer H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering. Wiley, New York, pp 69–112

    Google Scholar 

  57. Feidenhans’l R (1989) Surface structure determination by x-ray diffraction. Surf Sci Rep 10:105

    Article  Google Scholar 

  58. Fuoss PH, Brennan S (1990) Surface sensitive x-ray scattering. Annu Rev Mater Sci 20:360

    Article  Google Scholar 

  59. Robinson IK, Tweet DJ (1992) Surface x-ray diffraction. Rep Prog Phys 55:599

    Article  CAS  Google Scholar 

  60. Toney MF, Ocko BM (1993) Atomic structure at electrode interfaces. Synch Rad News 6:28

    Article  Google Scholar 

  61. Samant MG, Toney MF, Borges GL, Blum L, Melroy OR (1988) Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface. J Phys Chem 92:220

    Google Scholar 

  62. Naohara H, Ye S, Uosaki K (1998) Electrochemical layer-by-Layer growth of palladium on an Au(111) electrode surface: evidence for the important role of adsorbed Pd complex. J Phys Chem B 102:4366

    Article  CAS  Google Scholar 

  63. Kibler LA, Kleinert M, Randler R, Kolb DM (1999) Initial stages of Pd deposition on Au(hkl) part I. Pd on Au(111). Surf Sci 443:19

    Article  CAS  Google Scholar 

  64. Markovic NM, Lucas C, Climent V, Stamenkovic V, Ross PN (2000) Surface electrochemistry on an epitaxial palladium film on Pt(111): surface microstructure and hydrogen electrode kinetics. Surf Sci 465:103

    Article  CAS  Google Scholar 

  65. Ball M, Lucas C, Stamenkovic V, Ross PN, Markovic NM (2002) From sub-monolayer to multilayer-an in situ x-ray diffraction study of the growth of Pd films on Pt(111). Surf Sci 518:201

    Article  CAS  Google Scholar 

  66. Arenz M, Stamenkovic V, Wandelt K, Ross PN, Markovic NM (2002) CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions. Surf Sci 506:287

    Article  CAS  Google Scholar 

  67. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Phys Chem Chem Phys 5:4242

    Article  CAS  Google Scholar 

  68. Kobosev N, Monblanova W (1934) Acta Physicochem URSS 1, 611

    Google Scholar 

  69. Grubb WT (1963) Catalysis, electrocatalysis, and hydrocarbon fuel cells. Nature 198:883

    Article  CAS  Google Scholar 

  70. Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum, New York

    Google Scholar 

  71. Blizanac BB, Stamenkovic V, Markovic NM (2007) Electrocatalytic trends on IB group metals: the oxygen reduction reaction. Z Phys Chem 221:1379

    CAS  Google Scholar 

  72. Strmcnik D, Rebec P, Gaberscek M, Tripkovic D, Stamenkovic V, Lucas C, Markovic NM (2007) Relationship between the surface coverage of spectator species and the rate of the electrochemical reactions. J Phys Chem C 111:18672

    Article  CAS  Google Scholar 

  73. Appleby AJ (1970) Electrocatalysis and fuel cells. Catal Rev 4:221

    Article  CAS  Google Scholar 

  74. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  75. Markovic NM, Gasteiger HA, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591

    Article  CAS  Google Scholar 

  76. Markovic NM, Radmilovic V, Ross PN (2003) In: Wieckowski A, Savinova E, Vayenas C (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York, pp 311–342

    Google Scholar 

  77. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on non-noble metal-noble metal core-shell nanoparticle electrocatalysts for O-2 reduction. J Phys Chem B 109:22701

    Article  CAS  Google Scholar 

  78. Greeley J, Mavrikakis M (2006) Near-surface alloys for hydrogen fuel cell applications. Catal Today 111:52

    Article  CAS  Google Scholar 

  79. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053

    Article  CAS  Google Scholar 

  80. Gerischer H (1958) Bull Soc Chim Belg 67, 506–512

    Google Scholar 

  81. Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem (Lausanne Switz) 39:163

    Article  CAS  Google Scholar 

  82. Trasatti S (1995) Surface science and electrochemistry: concepts and problems. Surf Sci 335:1

    Article  CAS  Google Scholar 

  83. Markovic NM (2003) The hydrogen electrode reaction and the electrooxidation of CO and H2/CO mixtures on well-characterized Pt and Pt-bimetallic surfaces. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells; fundamentals, technology and application, vol. 2: electrocatalysis. Wiley, Chichester, pp 368–393

    Google Scholar 

  84. Conway BE, Bai L (1986) Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J Electroanal Chem (Lausanne Switz) 198:149

    Article  CAS  Google Scholar 

  85. Ludwig F, Sen RK, Yeager E (1977) Mechanism of the hydrogen electrode reaction on platinum in acid solution. Élektrokhimiya 13:847

    CAS  Google Scholar 

  86. Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Cat A Chem 115:421

    Article  CAS  Google Scholar 

  87. Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The effect of specific chloride adsorption on the electrochemical behaviour of ultrathin Pd films deposited on Pt(111) in acid solution. Surf Sci 523:199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge collaborators who were an integral part of the work described in this chapter: Philip Ross, Chris Lucas, Hubert Gasteiger, Thomas Schmidt, Matthias Arenz, Berislav Blizanac, Karl Mayrhofer, and Simon Mun. This work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad M. Markovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Stamenkovic, V.R., Markovic, N.M. (2010). Catalysis at Bimetallic Electrochemical Interfaces. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_3

Download citation

Publish with us

Policies and ethics