Catalysis at Bimetallic Electrochemical Interfaces

  • Vojislav R. Stamenkovic
  • Nenad M. Markovic


The need to understand the key structure/composition relationships governing the electrocatalytic behavior of metal surfaces continues to motivate fundamental studies of surface processes at the solid-liquid interfaces. Although the field is still in its infancy, a great deal is already known and trends are beginning to emerge that give new insight into the true relationship between the surface structure/composition and electrocatalytic activity. In this chapter, we will describe how by systematic variation of surface crystallography and/or surface composition of bimetallic surfaces, very important electrocatalytic trends are delineated. Structure/composition-function relationships are established by utilizing in situ surface-sensitive probes and vibrational spectroscopy, which in combination with ex situ ultrahigh vacuum (UHV) techniques and classical electrochemical methods, provide a link between the macroscopic kinetic rate of the reaction and the microscopic properties at the electrified metal-solution interface. The preponderance of electrocatalytic reactions discussed in this chapter are those related to the development of polymer electrolyte membrane fuel cell technology, viz. the oxygen reduction reaction, hydrogen reaction, and oxidation of COb. We demonstrate that the ability to make a controlled and well-characterized arrangement of atoms on the surface and/or the near-surface region, heralds a new era of advances in our knowledge of electrochemical reactions.


Oxygen Reduction Reaction Surface Segregation Oxygen Reduction Reaction Activity Thin Metal Film Polymer Electrolyte Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge collaborators who were an integral part of the work described in this chapter: Philip Ross, Chris Lucas, Hubert Gasteiger, Thomas Schmidt, Matthias Arenz, Berislav Blizanac, Karl Mayrhofer, and Simon Mun. This work was supported by the contract (DE-AC02-06CH11357) between the University of Chicago and Argonne, LLC, and the US Department of Energy.


  1. 1.
    Hubbard AT (1988) Electrochemistry at well-characterized surfaces. Chem Rev 88:633CrossRefGoogle Scholar
  2. 2.
    Ross PN Jr (1982) In: Vanselow R, Howe R (eds) Chemistry and physics of solid surfaces IV. Springer, Berlin, pp 173–201Google Scholar
  3. 3.
    Samant MG, Toney MF, Borges GL, Blum L, Melroy OR (1988) Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode–electrolyte interface. J Phys Chem 92:220CrossRefGoogle Scholar
  4. 4.
    Ocko BM, Wang J, Davenport A, Isaacs H (1990) In situ x-ray reflectivity and diffraction studies of the Au(001) reconstruction in an electrochemical cell. Phys Rev Lett 65:1466CrossRefGoogle Scholar
  5. 5.
    Tidswell IM, Markovic NM, Ross PN (1993) Potential dependent surface relaxation of the Pt(001)/electrolyte interface. Phys Rev Lett 71:1601CrossRefGoogle Scholar
  6. 6.
    Lucas C, Markovic NM, Ross PN (1996) Surface structure at the Pt(110)/electrolyte interface. Phys Rev Lett 77:4922CrossRefGoogle Scholar
  7. 7.
    Kolb DM (1996) Reconstruction phenomena at metal-electrolyte interfaces. Prog Surf Sci 51:109CrossRefGoogle Scholar
  8. 8.
    Itaya K (1998) In-situ scanning tunneling microscopy in electrolyte solutions. Prog Surf Sci 58:121CrossRefGoogle Scholar
  9. 9.
    Bard AJ, Fan FF, Pierce DT, Unwin PR, Wipf DO, Zhou F (1991) Chemical imaging of surfaces with the scanning electrochemical microscope. Science 254:68CrossRefGoogle Scholar
  10. 10.
    Somorjai GA (1993) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  11. 11.
    Ross PN Jr (1998) In: Lipkowski J, Ross PN Jr (eds) Electrocatalysis. Wiley, New York, pp 43–74Google Scholar
  12. 12.
    Iwasita T, Nart FC (1997) In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55:271CrossRefGoogle Scholar
  13. 13.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117CrossRefGoogle Scholar
  14. 14.
    Gauthier Y (2001) Pt-metal alloy surfaces: systematic trends. Surf Rev Lett 3:1663CrossRefGoogle Scholar
  15. 15.
    Stamenkovic V, Schmidt TJ, Markovic NM, Ross PN Jr (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reaction on well defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106:11970CrossRefGoogle Scholar
  16. 16.
    Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2003) Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J Electroanal Chem (Lausanne Switz) 554:191CrossRefGoogle Scholar
  17. 17.
    Mun BS, Watanabe M, Rossi M, Stamenkovic V, Markovic NM, Ross PN (2005) A study of electronic structures of Pt3M (M=Ti, V, Cr, Fe, Co, Ni) polycrystalline alloys with valence-band photoemission spectroscopy. J Chem Phys 123:204717CrossRefGoogle Scholar
  18. 18.
    Gasteiger HA, Ross PN, Cairns EJ (1993) LEIS and AES on sputtered and annealed polycrystalline Pt-Ru bulk alloys. Surf Sci 293:67CrossRefGoogle Scholar
  19. 19.
    Niehus H, Heiland W, Taglauer E (1993) Low energy ion scattering at surfaces. Surf Sci Rep 17:213CrossRefGoogle Scholar
  20. 20.
    Brongersma HH, Draxler M, de Ridder M, Bauer P (2007) Surface composition analysis by low-energy ion scattering. Surf Sci Rep 62:63CrossRefGoogle Scholar
  21. 21.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) The effect of surface composition on electronic structure, stability and electrochemical properties of Pt-transition metal alloys; Pt-skin vs Pt-skeleton surfaces. J Am Chem Soc 137:1Google Scholar
  22. 22.
    Campbell CT (1990) Bimetallic surface chemistry. Annu Rev Phys Chem 41:775CrossRefGoogle Scholar
  23. 23.
    Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493CrossRefGoogle Scholar
  24. 24.
    Thiel PA, Estrup PJ (1995) In: Hubbard AT (ed) The handbook of surface imaging and visualization. CRC, Boca Raton, FLGoogle Scholar
  25. 25.
    Hammer B, Norskov JK (1997) In: Lambert RM, Pacchioni G (eds) Chemisorption and reactivity on supported clusters and thin films. Kluwer, Dordrecht, pp 285–351Google Scholar
  26. 26.
    Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319CrossRefGoogle Scholar
  27. 27.
    Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810CrossRefGoogle Scholar
  28. 28.
    Mun BS, Lee C, Stamenkovic V, Markovic NM, Ross PN (2005) Electronic structure of Pd thin films on Re(0001) studied by high-resolution core-level and valence-band photoemission. Phys Rev B 71:115420–115426CrossRefGoogle Scholar
  29. 29.
    Stamenkovic VR, Mun BS, Arenz BSM, Mayrhofer KJJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic surfaces. Nat Mater 6:241CrossRefGoogle Scholar
  30. 30.
    Norskov JK, Kitchin JR, Bligaard JR, Joussen T (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886CrossRefGoogle Scholar
  31. 31.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed Engl 45:1CrossRefGoogle Scholar
  32. 32.
    Campbell CT, Rodriguez JA, Goodman DW (1992) Chemical and electronic properties of ultrathin metal films: the Pd/Re(0001) and Pd/Ru(0001) systems. Phys Rev B 46:7077CrossRefGoogle Scholar
  33. 33.
    Han M, Mrozek P, Wieckowski A (1993) X-ray photoelectron spectroscopy and auger electron spectroscopy study of ultrathin palladium films on a Pt(111) substrate. Phys Rev B 48:8329CrossRefGoogle Scholar
  34. 34.
    Hammer B, Morikawa Y, Norskov JK (1996) CO chemisorption at metal surfaces and overlayers. Phys Rev Lett 76:2141CrossRefGoogle Scholar
  35. 35.
    Biberian JP, Somorjai GA (1979) Surface structures of metallic monolayers on metal crystal surfaces. J Vac Sci Tech 16:2073CrossRefGoogle Scholar
  36. 36.
    Bardi U, Dahlgren D, Ross PN Jr (1986) J Catal 100:196Google Scholar
  37. 37.
    Campbell CT (1998) Applications of surface analytical techniques to the characterization of catalytic reactions. J Vac Sci Tech 6:1108Google Scholar
  38. 38.
    Bardi U, Atrei A, Rovida G, Ross PN (1991) Structure of the cobalt oxide layer formed by low-pressure oxidation of the Pt80Co20(100) surfaces – a study by LEED, LEIS, and XPS. Surf Sci 251:727CrossRefGoogle Scholar
  39. 39.
    Bardi U, Atrei A, Zanazzi E, Rovida G, Ross PN Jr (1990) Study of the reconstructed (001) surface of the Pt80Co20 alloy. Vacuum 41:437CrossRefGoogle Scholar
  40. 40.
    Atrei A, Bardi U, Rovida G (1997) Structure and composition of the titanium oxide layers formed by low-pressure oxidation of the Ni94Ti6(110) surface. Surf Sci 391:216CrossRefGoogle Scholar
  41. 41.
    Atrei A, Bardi U, Tarducci C, Rovida G (2002) Composition and structure of ultrathin vanadium oxide layers deposited on SnO2(110). Surf Sci 513:149CrossRefGoogle Scholar
  42. 42.
    Caffio M, Atrei A, Bardi U, Rovida G (2005) Growth mechanism and structure of nickel deposited on Ag(001). Surf Sci 588:135CrossRefGoogle Scholar
  43. 43.
    Attard GA, Bannister A (1991) The electrochemical behaviour of irreversibly adsorbed palladium on Pt(111) in acid media. J Electroanal Chem (Lausanne Switz) 300:467CrossRefGoogle Scholar
  44. 44.
    Feliu JM, Alvarez B, Climent V, Rodes A (2002) Electrochemical properties of Pd/Pt(111) adlayers. In: Soriaga MP (ed) Thin films. Kluwer, Dordrecht, pp 37–52Google Scholar
  45. 45.
    Alvarez B, Climent V, Rodes A, Feliu JM (2001) Anion adsorption on Pd-Pt(111) electrodes in sulfuric acid solution. J Electroanal Chem (Lausanne Switz) 497:125–138CrossRefGoogle Scholar
  46. 46.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed Engl 44:2132CrossRefGoogle Scholar
  47. 47.
    Attard GA, Price R, Alakl A (1995) Electrochemical and ultra-high vacuum characterization of rhodium on Pt(111) – a temperature dependant growth mode. Surf Sci 335:52CrossRefGoogle Scholar
  48. 48.
    Alvarez B, Climent V, Feliu JM, Aldaz A (2000) Determination of different local potentials of zero charge of a Pd-Au(111) heterogeneous surface. Electrochem Comm 2:427CrossRefGoogle Scholar
  49. 49.
    Shao MH, Huang T, Liu P, Zhang J, Sasaki K, Vukmirovic MB, Adzic RR (2006) Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction. Langmuir 22:10409CrossRefGoogle Scholar
  50. 50.
    Christensen A, Stoltze P, Norskov JK (1995) Size dependence of phase separation in small bimetallic clusters. J Phys Condens Matter 7:1047CrossRefGoogle Scholar
  51. 51.
    Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2003) Electrooxidation of H2, CO and H2/CO on well-characterized Au(111)-Pd surface alloy. Electrochim Acta 48:3823CrossRefGoogle Scholar
  52. 52.
    Christensen A, Ruban AV, Stolze P, Jacobsen KW, Skriver HL, Norskov JK, Besenbacher F (1997) Phase diagrams for surface alloys. Phys Rev B 56:5822CrossRefGoogle Scholar
  53. 53.
    Ruban AV, Skriver HL, Norskov JK (1999) Surface segregation energies in transition-metal alloys. Phys Rev B 59:15990CrossRefGoogle Scholar
  54. 54.
    Clavilier J, Llorca MJ, Feliu JM, Aldaz A (1991) Preliminary study of the electrochemical adsorption behaviour of a palladium modified Pt(111) electrode in the whole range of coverage. J Electroanal Chem (Lausanne Switz) 310:429CrossRefGoogle Scholar
  55. 55.
    Climent V, Markovic NM, Ross PN (2000) Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J Phys Chem B 104:3116CrossRefGoogle Scholar
  56. 56.
    Ross PN, Wagner FT (1984) In: Gerischer H, Tobias CW (eds) Advances in electrochemistry and electrochemical engineering. Wiley, New York, pp 69–112Google Scholar
  57. 57.
    Feidenhans’l R (1989) Surface structure determination by x-ray diffraction. Surf Sci Rep 10:105CrossRefGoogle Scholar
  58. 58.
    Fuoss PH, Brennan S (1990) Surface sensitive x-ray scattering. Annu Rev Mater Sci 20:360CrossRefGoogle Scholar
  59. 59.
    Robinson IK, Tweet DJ (1992) Surface x-ray diffraction. Rep Prog Phys 55:599CrossRefGoogle Scholar
  60. 60.
    Toney MF, Ocko BM (1993) Atomic structure at electrode interfaces. Synch Rad News 6:28CrossRefGoogle Scholar
  61. 61.
    Samant MG, Toney MF, Borges GL, Blum L, Melroy OR (1988) Grazing incidence x-ray diffraction of lead monolayers at a silver (111) and gold (111) electrode/electrolyte interface. J Phys Chem 92:220Google Scholar
  62. 62.
    Naohara H, Ye S, Uosaki K (1998) Electrochemical layer-by-Layer growth of palladium on an Au(111) electrode surface: evidence for the important role of adsorbed Pd complex. J Phys Chem B 102:4366CrossRefGoogle Scholar
  63. 63.
    Kibler LA, Kleinert M, Randler R, Kolb DM (1999) Initial stages of Pd deposition on Au(hkl) part I. Pd on Au(111). Surf Sci 443:19CrossRefGoogle Scholar
  64. 64.
    Markovic NM, Lucas C, Climent V, Stamenkovic V, Ross PN (2000) Surface electrochemistry on an epitaxial palladium film on Pt(111): surface microstructure and hydrogen electrode kinetics. Surf Sci 465:103CrossRefGoogle Scholar
  65. 65.
    Ball M, Lucas C, Stamenkovic V, Ross PN, Markovic NM (2002) From sub-monolayer to multilayer-an in situ x-ray diffraction study of the growth of Pd films on Pt(111). Surf Sci 518:201CrossRefGoogle Scholar
  66. 66.
    Arenz M, Stamenkovic V, Wandelt K, Ross PN, Markovic NM (2002) CO adsorption and kinetics on well-characterized Pd films on Pt(111) in alkaline solutions. Surf Sci 506:287CrossRefGoogle Scholar
  67. 67.
    Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces. Phys Chem Chem Phys 5:4242CrossRefGoogle Scholar
  68. 68.
    Kobosev N, Monblanova W (1934) Acta Physicochem URSS 1, 611Google Scholar
  69. 69.
    Grubb WT (1963) Catalysis, electrocatalysis, and hydrocarbon fuel cells. Nature 198:883CrossRefGoogle Scholar
  70. 70.
    Bockris JOM, Reddy AKN (1970) Modern electrochemistry. Plenum, New YorkGoogle Scholar
  71. 71.
    Blizanac BB, Stamenkovic V, Markovic NM (2007) Electrocatalytic trends on IB group metals: the oxygen reduction reaction. Z Phys Chem 221:1379Google Scholar
  72. 72.
    Strmcnik D, Rebec P, Gaberscek M, Tripkovic D, Stamenkovic V, Lucas C, Markovic NM (2007) Relationship between the surface coverage of spectator species and the rate of the electrochemical reactions. J Phys Chem C 111:18672CrossRefGoogle Scholar
  73. 73.
    Appleby AJ (1970) Electrocatalysis and fuel cells. Catal Rev 4:221CrossRefGoogle Scholar
  74. 74.
    Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New YorkGoogle Scholar
  75. 75.
    Markovic NM, Gasteiger HA, Ross PN (1997) Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591CrossRefGoogle Scholar
  76. 76.
    Markovic NM, Radmilovic V, Ross PN (2003) In: Wieckowski A, Savinova E, Vayenas C (eds) Catalysis and electrocatalysis at nanoparticle surfaces. Marcel Dekker, New York, pp 311–342Google Scholar
  77. 77.
    Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on non-noble metal-noble metal core-shell nanoparticle electrocatalysts for O-2 reduction. J Phys Chem B 109:22701CrossRefGoogle Scholar
  78. 78.
    Greeley J, Mavrikakis M (2006) Near-surface alloys for hydrogen fuel cell applications. Catal Today 111:52CrossRefGoogle Scholar
  79. 79.
    Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053CrossRefGoogle Scholar
  80. 80.
    Gerischer H (1958) Bull Soc Chim Belg 67, 506–512Google Scholar
  81. 81.
    Trasatti S (1972) Work function, electronegativity, and electrochemical behaviour of metals III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem (Lausanne Switz) 39:163CrossRefGoogle Scholar
  82. 82.
    Trasatti S (1995) Surface science and electrochemistry: concepts and problems. Surf Sci 335:1CrossRefGoogle Scholar
  83. 83.
    Markovic NM (2003) The hydrogen electrode reaction and the electrooxidation of CO and H2/CO mixtures on well-characterized Pt and Pt-bimetallic surfaces. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells; fundamentals, technology and application, vol. 2: electrocatalysis. Wiley, Chichester, pp 368–393Google Scholar
  84. 84.
    Conway BE, Bai L (1986) Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J Electroanal Chem (Lausanne Switz) 198:149CrossRefGoogle Scholar
  85. 85.
    Ludwig F, Sen RK, Yeager E (1977) Mechanism of the hydrogen electrode reaction on platinum in acid solution. Élektrokhimiya 13:847Google Scholar
  86. 86.
    Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Cat A Chem 115:421CrossRefGoogle Scholar
  87. 87.
    Arenz M, Stamenkovic V, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The effect of specific chloride adsorption on the electrochemical behaviour of ultrathin Pd films deposited on Pt(111) in acid solution. Surf Sci 523:199CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Argonne National LaboratoryUniversity of ChicagoArgonneUSA

Personalised recommendations