Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology

  • Robert Raja
  • John Meurig Thomas


The advantages that flow from the availability of single-site heterogeneous catalysts are many. They facilitate the determination of the kinetics and mechanism of catalytic turnover and render accessible the energetics of various intermediates. More importantly, it is possible to prepare soluble molecular fragments that circumscribe the single site, thus enabling a direct comparison to be made between the catalytic performance of the same active site when functioning as a heterogeneous or a homogeneous catalyst. Our approach adopts the principles and practices of solid-state chemistry, augmented by lessons derived from enzymology, as well as computational chemistry. We have succeeded in designing a range of new catalysts to effect, inter alia, shape-selective, regioselective, bifunctional, and enantioselective catalytic conversions. In particular, large fractions of these catalysts are ideally suited for the era of clean technology in which single-step and/or solvent-free processes abound, and in which benign oxidants such as air or oxygen and inexpensive nanoporous materials are employed.


Mesoporous Silica Adipic Acid Mandelic Acid Isonicotinic Acid Bimetallic Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Thomas JM, Raja R, Lewis DW (2005) Single site heterogeneous catalysts. Angew Chem Int Ed Engl 44:6456CrossRefGoogle Scholar
  2. 2.
    Thomas JM, Raja R, Sankar G, Johnson BFG, Lewis DW (2001) Solvent-free routes to clean technology. Chem Eur J 7:2973CrossRefGoogle Scholar
  3. 3.
    Thomas JM, Raja R (2005) Designing catalysts for clean technology, green chemistry and sustainable development. Annu Rev Mater Res 35:315CrossRefGoogle Scholar
  4. 4.
    Thomas JM, Raja R, Sankar G, Bell RG, Lewis DW (2001) Benign by design: new catalysts for an environmentally conscious age. Pure Appl Chem 73:1087CrossRefGoogle Scholar
  5. 5.
    Thomas JM, Raja R, Sankar G, Bell RG (1999) Molecular sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature 398:227CrossRefGoogle Scholar
  6. 6.
    Raja R, Thomas JM (1998) A manganese containing molecular sieve catalyst designed for the terminal oxidation of dodecane in air. Chem Commun 1841Google Scholar
  7. 7.
    Roesler R, Schelle S, Gnann M, Zeiss W (1995) US 5,462,692, Peroxid Chemie GMBHGoogle Scholar
  8. 8.
    Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts. Chem Commun 448Google Scholar
  9. 9.
    Dugal M, Sankar G, Raja R, Thomas JM (2000) Designing a heterogeneous catalysts for the production of adipic acid by the aerial oxidation of cyclohexane. Angew Chem Int Ed Engl 39:2310CrossRefGoogle Scholar
  10. 10.
    Thomas JM, Raja R (2001) Catalytically active centers in porous oxides: design and performance of highly selective new catalysts. Chem Commun 675Google Scholar
  11. 11.
    Yu JH, Xu R (2006) Insight into the construction of open-framework aluminophosphates. Chem Soc Rev 35:593CrossRefGoogle Scholar
  12. 12.
    Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 26:10657CrossRefGoogle Scholar
  13. 13.
    Porta F, Prati L (2004) Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. J Catal 224:397CrossRefGoogle Scholar
  14. 14.
    Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley-VCH, WeinheimGoogle Scholar
  15. 15.
    Raja R, Thomas JM, Greenhill-Hooper M, Doukova V (2007) A high-performance selective oxidation system for the facile production of fine chemicals. Chem Commun 1924Google Scholar
  16. 16.
    Hatanaka M, Tanaka N (1993) WO 9305022, Nissan Chemical Ind. Ltd.Google Scholar
  17. 17.
    Thomas JM, Raja R (2005) Design of a “green” one-step catalytic production of ε-caprolactam (precursor of nylon-6). Proc Natl Acad Sci U S A 102:13732CrossRefGoogle Scholar
  18. 18.
    Tashiro Y, Nagashima T, Aoki S, Nishizawa R (1980) US Patent No. 4,224,239Google Scholar
  19. 19.
    Endo T, Tamura K (1993) US Patent No. 5,223,416Google Scholar
  20. 20.
    Haslam E (1980) Recent developments in methods for the esterification and protection of the carboxyl group. Tetrahedron 36:2409CrossRefGoogle Scholar
  21. 21.
    Yadav GD, Bhagat RD (2004) Synthesis of methyl phenyl glyoxylate via clean oxidation of methyl mandelate over a nanocatalyst based on heteropolyacid supported on clay. Org Process Res Dev 8:879CrossRefGoogle Scholar
  22. 22.
    Thomas JM, Maschmeyer T, Johnson BFG, Shephard DS (1999) Constrained chiral catalysts. J Mol Catal 141:139CrossRefGoogle Scholar
  23. 23.
    Johnson BFG, Raynor SA, Shephard DS, Maschmeyer T, Thomas JM, Sankar G, Bromley S, Oldroyd RD, Gladden L, Mantle MD (1999) Superior performance of a chiral catalyst confined within mesoporous silica. Chem Commun 1167Google Scholar
  24. 24.
    Raynor SA, Thomas JM, Raja R, Johnson BFG, Bell RG, Mantle MD (2000) A one-step enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained chiral heterogeneous catalyst. Chem Commun 1925Google Scholar
  25. 25.
    Raja R, Thomas JM, Jones MD, Johnson BFG (2003) German Patent Filing No. DE 10305946Google Scholar
  26. 26.
    Thomas JM, Johnson BFG, Raja R, Jones MD (2004) US Patent Filing No. US 10326915Google Scholar
  27. 27.
    Thomas JM, Raja R, Jones MD, Johnson BFG (2004) European Patent Filing No. EP 4001904Google Scholar
  28. 28.
    Jones MD, Raja R, Thomas JM, Johnson BFG, Lewis DW, Rouzard J, Harris KDM (2003) Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts. Angew Chem Int Ed Engl 42:4326CrossRefGoogle Scholar
  29. 29.
    Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW (2003) Constraining asymmetric organometallic catalysts within mesoporous silica boosts their enantioselectivity. J Am Chem Soc 125:14982CrossRefGoogle Scholar
  30. 30.
    Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed Engl 45:4732CrossRefGoogle Scholar
  31. 31.
    Yang HQ, Li J, Yang J, Liu ZM, Yang QH, Li C (2007) Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chem Commun 1086Google Scholar
  32. 32.
    Song CE, Kim DH, Choi DS (2006) Chiral organometallic catalysts in confined nanospaces: significantly enhanced enantioselectivity and stability. Eur J Inorg Chem 15:2927CrossRefGoogle Scholar
  33. 33.
    Ferrando RL, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845CrossRefGoogle Scholar
  34. 34.
    Mejia-Rosales SJ, Fernandez-Navarro C, Perez-Tijerina E, Montejano-Carrizalles JM, Jose-Yacaman M (2006) Two-stage melting of Au-Pd nanoparticles. J Phys Chem B 110:12884CrossRefGoogle Scholar
  35. 35.
    Mejia-Rosales SJ, Fernandez-Navarro C, Perez-Tijerina E, Bloom DA, Allard LF, Jose-Yacaman M (2007) On the structure of Au/Pd bimetallic nanoparticles. J Phys Chem C 111:1256CrossRefGoogle Scholar
  36. 36.
    Fernandez JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au). J Am Chem Soc 127:357CrossRefGoogle Scholar
  37. 37.
    Shephard DS, Maschmeyer T, Johnson BFG, Thomas JM, Sankar G, Ozkaya D, Zhou WZ, Oldroyd RD, Bell RG (1997) Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew Chem Int Ed Engl 36:2242CrossRefGoogle Scholar
  38. 38.
    Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20CrossRefGoogle Scholar
  39. 39.
    Ward EPW, Arslan I, Midgley PA, Bleloch A, Thomas JM (2005) Direct visualisation, by aberration-corrected electron microscopy, of the crystallisation of bimetallic nanoparticle catalysts. Chem Commun 5805Google Scholar
  40. 40.
    Bromley ST, Sankar G, Catlow CRA, Maschmeyer T, Jenkins BFG, Thomas JM (2001) New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study. Chem Phys Lett 340:524CrossRefGoogle Scholar
  41. 41.
    Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T. (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem Commun 1126Google Scholar
  42. 42.
    Jose-Yacaman M, Perez-Tijerina E, Rosales SM (2007) Defect structures in nanoalloys. J Mater Chem 17:1035CrossRefGoogle Scholar
  43. 43.
    Nielsen M, Feidenhans’l R, Rasmussen FB, Baker J, Falkenberg G, Lottermoser L, Johnston RL, Steinfort AJ, Scholte PML (1998) Epitaxial clusters studied by synchrotron X-ray diffraction and scanning tunneling microscopy. Physica B Cond Matter 248:1CrossRefGoogle Scholar
  44. 44.
    Cleveland CL, Landman U, Schaaff TG, Shafigallin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873CrossRefGoogle Scholar
  45. 45.
    Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192CrossRefGoogle Scholar
  46. 46.
    Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116:399CrossRefGoogle Scholar
  47. 47.
    Turner SR (2004) Development of amorphous copolyesters based on 1, 4-cyclohexanedimethanol. J Polym Sci A: Polym Chem 42:5847CrossRefGoogle Scholar
  48. 48.
    Appleton P, Wood MA (1993) US 5414159, Eastman ChemicalGoogle Scholar
  49. 49.
    Raja R, Khimyak T, Thomas JM, Hermans S, Johnson BFG (2001) Single-step highly active and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds. Angew Chem Int Ed Engl 40:4638CrossRefGoogle Scholar
  50. 50.
    Hermans S, Raja R, Thomas JM, Johnson BFG, Sankar G, Gleeson D (2001) Solvent-free low temperature selective hydrogenation of polyenes using a bimetallic nanoparticle Ru-Sn catalyst. Angew Chem Int Ed Engl 40:1211CrossRefGoogle Scholar
  51. 51.
    Fujikawa T, Ribeiro FH, Somarjai GA (1998) The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils. J Catal 178:58CrossRefGoogle Scholar
  52. 52.
    Adams RD, Captain B, Smith JL Jr, Hall MB, Beddie CL, Webster CE (2004) Superloading of tin ligands into rhodium and iridium carbonyl cluster complexes. Inorg Chem 43:7576CrossRefGoogle Scholar
  53. 53.
    Adams RD, Boswell EM, Captain B, Hungria AB, Midgley PA, Raja R, Thomas JM (2007) Bimetallic Ru-Sn nanoparticle catalysts for the solvent-free selective hydrogenation of 1, 5, 9-cyclododecatriene to cyclododecene. Angew Chem Int Ed Engl 46:8182CrossRefGoogle Scholar
  54. 54.
    Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko V, Johnson BFG (2006) Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew Chem Int Ed Engl 45:4782CrossRefGoogle Scholar
  55. 55.
    Stuber F, Delmas H (2003) Partial hydrogenation in an upflow fixed-bed reactor: a multistage operation for experimental optimization of selectivity. Ind Eng Chem Res 42:6CrossRefGoogle Scholar
  56. 56.
    Mealli C, Rauchfuss TB (2007) Models for the hydrogenases put the focus where it should be-hydrogen. Angew Chem Int Ed Engl 46:8942CrossRefGoogle Scholar
  57. 57.
    Adams RD (2000) Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. J Organomet Chem 600:1CrossRefGoogle Scholar
  58. 58.
    Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed Engl 45:7896CrossRefGoogle Scholar
  59. 59.
    Cortright RD, Dumesic JA (1995) Effect of potassium on silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J Catal 157:576CrossRefGoogle Scholar
  60. 60.
    Holt MS, Wilson WL, Nelson JH (1989) Transition metal tin chemistry. Chem Rev 89:11CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Chemistry, University of Southampton, HighfieldSouthamptonUK

Personalised recommendations