Skip to main content

Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology

  • Chapter
  • First Online:
Model Systems in Catalysis

Abstract

The advantages that flow from the availability of single-site heterogeneous catalysts are many. They facilitate the determination of the kinetics and mechanism of catalytic turnover and render accessible the energetics of various intermediates. More importantly, it is possible to prepare soluble molecular fragments that circumscribe the single site, thus enabling a direct comparison to be made between the catalytic performance of the same active site when functioning as a heterogeneous or a homogeneous catalyst. Our approach adopts the principles and practices of solid-state chemistry, augmented by lessons derived from enzymology, as well as computational chemistry. We have succeeded in designing a range of new catalysts to effect, inter alia, shape-selective, regioselective, bifunctional, and enantioselective catalytic conversions. In particular, large fractions of these catalysts are ideally suited for the era of clean technology in which single-step and/or solvent-free processes abound, and in which benign oxidants such as air or oxygen and inexpensive nanoporous materials are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas JM, Raja R, Lewis DW (2005) Single site heterogeneous catalysts. Angew Chem Int Ed Engl 44:6456

    Article  CAS  Google Scholar 

  2. Thomas JM, Raja R, Sankar G, Johnson BFG, Lewis DW (2001) Solvent-free routes to clean technology. Chem Eur J 7:2973

    Article  CAS  Google Scholar 

  3. Thomas JM, Raja R (2005) Designing catalysts for clean technology, green chemistry and sustainable development. Annu Rev Mater Res 35:315

    Article  CAS  Google Scholar 

  4. Thomas JM, Raja R, Sankar G, Bell RG, Lewis DW (2001) Benign by design: new catalysts for an environmentally conscious age. Pure Appl Chem 73:1087

    Article  CAS  Google Scholar 

  5. Thomas JM, Raja R, Sankar G, Bell RG (1999) Molecular sieve catalysts for the selective oxidation of linear alkanes by molecular oxygen. Nature 398:227

    Article  CAS  Google Scholar 

  6. Raja R, Thomas JM (1998) A manganese containing molecular sieve catalyst designed for the terminal oxidation of dodecane in air. Chem Commun 1841

    Google Scholar 

  7. Roesler R, Schelle S, Gnann M, Zeiss W (1995) US 5,462,692, Peroxid Chemie GMBH

    Google Scholar 

  8. Raja R, Thomas JM, Xu M, Harris KDM, Greenhill-Hooper M, Quill K (2006) Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts. Chem Commun 448

    Google Scholar 

  9. Dugal M, Sankar G, Raja R, Thomas JM (2000) Designing a heterogeneous catalysts for the production of adipic acid by the aerial oxidation of cyclohexane. Angew Chem Int Ed Engl 39:2310

    Article  CAS  Google Scholar 

  10. Thomas JM, Raja R (2001) Catalytically active centers in porous oxides: design and performance of highly selective new catalysts. Chem Commun 675

    Google Scholar 

  11. Yu JH, Xu R (2006) Insight into the construction of open-framework aluminophosphates. Chem Soc Rev 35:593

    Article  CAS  Google Scholar 

  12. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen. J Am Chem Soc 26:10657

    Article  Google Scholar 

  13. Porta F, Prati L (2004) Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. J Catal 224:397

    Article  CAS  Google Scholar 

  14. Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  15. Raja R, Thomas JM, Greenhill-Hooper M, Doukova V (2007) A high-performance selective oxidation system for the facile production of fine chemicals. Chem Commun 1924

    Google Scholar 

  16. Hatanaka M, Tanaka N (1993) WO 9305022, Nissan Chemical Ind. Ltd.

    Google Scholar 

  17. Thomas JM, Raja R (2005) Design of a “green” one-step catalytic production of ε-caprolactam (precursor of nylon-6). Proc Natl Acad Sci U S A 102:13732

    Article  CAS  Google Scholar 

  18. Tashiro Y, Nagashima T, Aoki S, Nishizawa R (1980) US Patent No. 4,224,239

    Google Scholar 

  19. Endo T, Tamura K (1993) US Patent No. 5,223,416

    Google Scholar 

  20. Haslam E (1980) Recent developments in methods for the esterification and protection of the carboxyl group. Tetrahedron 36:2409

    Article  CAS  Google Scholar 

  21. Yadav GD, Bhagat RD (2004) Synthesis of methyl phenyl glyoxylate via clean oxidation of methyl mandelate over a nanocatalyst based on heteropolyacid supported on clay. Org Process Res Dev 8:879

    Article  CAS  Google Scholar 

  22. Thomas JM, Maschmeyer T, Johnson BFG, Shephard DS (1999) Constrained chiral catalysts. J Mol Catal 141:139

    Article  CAS  Google Scholar 

  23. Johnson BFG, Raynor SA, Shephard DS, Maschmeyer T, Thomas JM, Sankar G, Bromley S, Oldroyd RD, Gladden L, Mantle MD (1999) Superior performance of a chiral catalyst confined within mesoporous silica. Chem Commun 1167

    Google Scholar 

  24. Raynor SA, Thomas JM, Raja R, Johnson BFG, Bell RG, Mantle MD (2000) A one-step enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained chiral heterogeneous catalyst. Chem Commun 1925

    Google Scholar 

  25. Raja R, Thomas JM, Jones MD, Johnson BFG (2003) German Patent Filing No. DE 10305946

    Google Scholar 

  26. Thomas JM, Johnson BFG, Raja R, Jones MD (2004) US Patent Filing No. US 10326915

    Google Scholar 

  27. Thomas JM, Raja R, Jones MD, Johnson BFG (2004) European Patent Filing No. EP 4001904

    Google Scholar 

  28. Jones MD, Raja R, Thomas JM, Johnson BFG, Lewis DW, Rouzard J, Harris KDM (2003) Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts. Angew Chem Int Ed Engl 42:4326

    Article  CAS  Google Scholar 

  29. Raja R, Thomas JM, Jones MD, Johnson BFG, Vaughan DEW (2003) Constraining asymmetric organometallic catalysts within mesoporous silica boosts their enantioselectivity. J Am Chem Soc 125:14982

    Article  CAS  Google Scholar 

  30. Heitbaum M, Glorius F, Escher I (2006) Asymmetric heterogeneous catalysis. Angew Chem Int Ed Engl 45:4732

    Article  CAS  Google Scholar 

  31. Yang HQ, Li J, Yang J, Liu ZM, Yang QH, Li C (2007) Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage. Chem Commun 1086

    Google Scholar 

  32. Song CE, Kim DH, Choi DS (2006) Chiral organometallic catalysts in confined nanospaces: significantly enhanced enantioselectivity and stability. Eur J Inorg Chem 15:2927

    Article  Google Scholar 

  33. Ferrando RL, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845

    Article  CAS  Google Scholar 

  34. Mejia-Rosales SJ, Fernandez-Navarro C, Perez-Tijerina E, Montejano-Carrizalles JM, Jose-Yacaman M (2006) Two-stage melting of Au-Pd nanoparticles. J Phys Chem B 110:12884

    Article  CAS  Google Scholar 

  35. Mejia-Rosales SJ, Fernandez-Navarro C, Perez-Tijerina E, Bloom DA, Allard LF, Jose-Yacaman M (2007) On the structure of Au/Pd bimetallic nanoparticles. J Phys Chem C 111:1256

    Article  CAS  Google Scholar 

  36. Fernandez JL, Walsh DA, Bard AJ (2005) Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M: Pd, Ag, Au). J Am Chem Soc 127:357

    Article  CAS  Google Scholar 

  37. Shephard DS, Maschmeyer T, Johnson BFG, Thomas JM, Sankar G, Ozkaya D, Zhou WZ, Oldroyd RD, Bell RG (1997) Bimetallic nanoparticle catalysts anchored inside mesoporous silica. Angew Chem Int Ed Engl 36:2242

    Article  CAS  Google Scholar 

  38. Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20

    Article  CAS  Google Scholar 

  39. Ward EPW, Arslan I, Midgley PA, Bleloch A, Thomas JM (2005) Direct visualisation, by aberration-corrected electron microscopy, of the crystallisation of bimetallic nanoparticle catalysts. Chem Commun 5805

    Google Scholar 

  40. Bromley ST, Sankar G, Catlow CRA, Maschmeyer T, Jenkins BFG, Thomas JM (2001) New insights into the structure of supported bimetallic nanocluster catalysts prepared from carbonylated precursors: a combined density functional theory and EXAFS study. Chem Phys Lett 340:524

    Article  CAS  Google Scholar 

  41. Thomas JM, Raja R, Johnson BFG, O’Connell TJ, Sankar G, Khimyak T. (2003) Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem Commun 1126

    Google Scholar 

  42. Jose-Yacaman M, Perez-Tijerina E, Rosales SM (2007) Defect structures in nanoalloys. J Mater Chem 17:1035

    Article  CAS  Google Scholar 

  43. Nielsen M, Feidenhans’l R, Rasmussen FB, Baker J, Falkenberg G, Lottermoser L, Johnston RL, Steinfort AJ, Scholte PML (1998) Epitaxial clusters studied by synchrotron X-ray diffraction and scanning tunneling microscopy. Physica B Cond Matter 248:1

    Article  CAS  Google Scholar 

  44. Cleveland CL, Landman U, Schaaff TG, Shafigallin MN, Stephens PW, Whetten RL (1997) Structural evolution of smaller gold nanocrystals: the truncated decahedral motif. Phys Rev Lett 79:1873

    Article  CAS  Google Scholar 

  45. Rioux RM, Song H, Hoefelmeyer JD, Yang P, Somorjai GA (2005) High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J Phys Chem B 109:2192

    Article  CAS  Google Scholar 

  46. Draths KM, Frost JW (1994) Environmentally compatible synthesis of adipic acid from D-glucose. J Am Chem Soc 116:399

    Article  CAS  Google Scholar 

  47. Turner SR (2004) Development of amorphous copolyesters based on 1, 4-cyclohexanedimethanol. J Polym Sci A: Polym Chem 42:5847

    Article  CAS  Google Scholar 

  48. Appleton P, Wood MA (1993) US 5414159, Eastman Chemical

    Google Scholar 

  49. Raja R, Khimyak T, Thomas JM, Hermans S, Johnson BFG (2001) Single-step highly active and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds. Angew Chem Int Ed Engl 40:4638

    Article  CAS  Google Scholar 

  50. Hermans S, Raja R, Thomas JM, Johnson BFG, Sankar G, Gleeson D (2001) Solvent-free low temperature selective hydrogenation of polyenes using a bimetallic nanoparticle Ru-Sn catalyst. Angew Chem Int Ed Engl 40:1211

    Article  CAS  Google Scholar 

  51. Fujikawa T, Ribeiro FH, Somarjai GA (1998) The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils. J Catal 178:58

    Article  CAS  Google Scholar 

  52. Adams RD, Captain B, Smith JL Jr, Hall MB, Beddie CL, Webster CE (2004) Superloading of tin ligands into rhodium and iridium carbonyl cluster complexes. Inorg Chem 43:7576

    Article  CAS  Google Scholar 

  53. Adams RD, Boswell EM, Captain B, Hungria AB, Midgley PA, Raja R, Thomas JM (2007) Bimetallic Ru-Sn nanoparticle catalysts for the solvent-free selective hydrogenation of 1, 5, 9-cyclododecatriene to cyclododecene. Angew Chem Int Ed Engl 46:8182

    Article  CAS  Google Scholar 

  54. Hungria AB, Raja R, Adams RD, Captain B, Thomas JM, Midgley PA, Golovko V, Johnson BFG (2006) Single-step conversion of dimethyl terephthalate into cyclohexanedimethanol with Ru5PtSn, a trimetallic nanoparticle catalyst. Angew Chem Int Ed Engl 45:4782

    Article  CAS  Google Scholar 

  55. Stuber F, Delmas H (2003) Partial hydrogenation in an upflow fixed-bed reactor: a multistage operation for experimental optimization of selectivity. Ind Eng Chem Res 42:6

    Article  Google Scholar 

  56. Mealli C, Rauchfuss TB (2007) Models for the hydrogenases put the focus where it should be-hydrogen. Angew Chem Int Ed Engl 46:8942

    Article  CAS  Google Scholar 

  57. Adams RD (2000) Metal segregation in bimetallic clusters and its possible role in synergism and bifunctional catalysis. J Organomet Chem 600:1

    Article  CAS  Google Scholar 

  58. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed Engl 45:7896

    Article  Google Scholar 

  59. Cortright RD, Dumesic JA (1995) Effect of potassium on silica supported Pt and Pt/Sn catalysts for isobutane dehydrogenation. J Catal 157:576

    Article  CAS  Google Scholar 

  60. Holt MS, Wilson WL, Nelson JH (1989) Transition metal tin chemistry. Chem Rev 89:11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Raja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Raja, R., Thomas, J.M. (2010). Single-Site Heterogeneous Catalysts: Innovations, Advantages, and Future Potential in Green Chemistry and Sustainable Technology. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_21

Download citation

Publish with us

Policies and ethics