Advertisement

Well-Defined Metallic and Bimetallic Clusters Supported on Oxides and Zeolites

  • Javier Guzman
Chapter

Abstract

Immobilized metallic and bimetallic complexes and clusters on oxide or zeolite supports made from well-defined molecular organometallic precursors have drawn wide attention because of their novel size-dependent properties and their potential applications for catalysis. It is speculated that nearly molecular supported catalysts may combine the high activity and selectivity of homogenous catalysts with the ease of separation and robustness of operation of heterogeneous catalysts. This chapter is a review of the synthesis and physical characterization of metallic and bimetallic complexes and clusters supported on metal oxides and zeolites prepared from organometallic precursors of well-defined molecularity and stoichiometry.

Keywords

Metal Cluster Bimetallic Cluster Organometallic Precursor Crotyl Alcohol Toluene Hydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Science Foundation (grant EEC-0310689) and the University of Kansas Center for Research (2302069 and 2301115).

References

  1. 1.
    Thomas JM (2006) The tortuous tale of the catalytically active site. Top Catal 38:3CrossRefGoogle Scholar
  2. 2.
    Somorjai GA, McCrea KR, Zhu J (2002) Active sites in heterogeneous catalysis: Development of molecular concepts and future challenges. Top Catal 18:157CrossRefGoogle Scholar
  3. 3.
    Guzman J, Gates BC (2003) Supported molecular catalysts: Metal complexes and clusters on oxides and zeolites. J Chem Soc Dalton Trans 17:3303Google Scholar
  4. 4.
    McKittrick MW, Jones CW (2004) Toward single-site, immobilized molecular catalysts: Site-isolated Ti ethylene polymerization catalysts supported on porous silica. J Am Chem Soc 126:3052CrossRefGoogle Scholar
  5. 5.
    Corma A, Garcia H (2006) Silica-bound homogeneous catalysts as recoverable and reusable catalysts in organic synthesis. Adv Synth Catal 348:1391CrossRefGoogle Scholar
  6. 6.
    Abramo GP, Li L, Marks TJ (2002) Polynuclear catalysis: Enhancement of enchainment cooperativity between different single-site olefin polymerization catalysts by ion pairing with a binuclear cocatalyst. J Am Chem Soc 124:13966CrossRefGoogle Scholar
  7. 7.
    Severn JR, Duchateau R, van Santen RA, Ellis DD, Spek AL (2002) Homogeneous models for chemically tethered silica-supported olefin polymerization catalysts. Organometallics 21:4CrossRefGoogle Scholar
  8. 8.
    Severn JR, Chadwick JC, Duchateau R, Friederichs N (2005) “Bound but not gagged” – immobilizing single-site α-olefin polymerization catalysts. Chem Rev 105:4073CrossRefGoogle Scholar
  9. 9.
    Yermakov YI, Kuznetsov BN, Zakharov VA (eds) (1981) Studies in surface science and catalysis, vol 8. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Ballard DGH (1973) π and σ transition metal carbon compounds as catalysts for the polymerization of vinyl monomers and olefins. Adv Catal 23:263CrossRefGoogle Scholar
  11. 11.
    Walzer JF Jr (1997) Supported metallocene catalyst composition. US Patent 5,643,847Google Scholar
  12. 12.
    McVicker GB, Kao JL, Ziemiak JJ, Gates WE, Robbins JL, Treacy MMJ, Rice SB, Vanderspurt TH, Cross VR, Ghosh AK (1993) Effect of sulfur on the performance and on the particle size and location of platinum in Pt/KL hexane aromatization catalysts. J Catal 139:48CrossRefGoogle Scholar
  13. 13.
    Gates BC (1995) Supported metal clusters: Synthesis, structure, and catalysis. Chem Rev 95:511CrossRefGoogle Scholar
  14. 14.
    Ugo R, Dossi C, Psaro R (1996) Molecular metal carbonyl clusters and volatile organometallic compounds for tailored mono and bimetallic heterogeneous catalysts. J Mol Catal A 107:13CrossRefGoogle Scholar
  15. 15.
    Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J-M (2003) Homogeneous and heterogeneous catalysis: Bridging the gap through surface organometallic chemistry. Angew Chem Int Ed 42:156CrossRefGoogle Scholar
  16. 16.
    Ichikawa M, Pan W, Imada Y, Yamaguchi M, Isobe K, Shido T (1996) Surface-grafted metal oxide clusters and metal carbonyl clusters in zeolite micropores; XAFS/FTIR/TPD characterization and catalytic behavior. J Mol Catal A: Chem 107:23CrossRefGoogle Scholar
  17. 17.
    Freund H-J, Bäumer M, Kuhlenbeck H (2000) Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems? Adv Catal 45:333CrossRefGoogle Scholar
  18. 18.
    Guzman J, Gates BC (2003) Reactions of Au(CH3)2(acac) on γ-Al2O3: Characterization of the surface organic, organometallic, metal oxide, and metallic species. Langmuir 19:3897CrossRefGoogle Scholar
  19. 19.
    Avenier P, Lesage A, Taoufik M, Baudouin A, De Mallmann A, Fiddy S, Vautier M, Veyre L, Basset J-M, Emsley L, Quadrelli EA (2007) Well-defined surface imido amido tantalum(V) species from ammonia and silica-supported tantalum hydrides. J Am Chem Soc 129:176CrossRefGoogle Scholar
  20. 20.
    Basset J-M, Lefebvre F, Santini C (1998) Surface organometallic chemistry: Some fundamental features including the coordination effects of the support. Coord Chem Rev 178–180:1703CrossRefGoogle Scholar
  21. 21.
    Gates BC (2000) Supported metal cluster catalysts. J Mol Catal A: Chem 163:55CrossRefGoogle Scholar
  22. 22.
    Fierro-Gonzalez JC, Kuba S, Hao Y, Gates BC (2006) Oxide- and zeolite-supported molecular metal complexes and clusters: Physical characterization and determination of structure, bonding, and metal oxidation state. J Phys Chem B 110:13326CrossRefGoogle Scholar
  23. 23.
    O’Keefe MA, Allard LF, Blom DA (2005) HRTEM imaging of atoms at sub-angstrom resolution. J Electron Microsc 54:169CrossRefGoogle Scholar
  24. 24.
    Nellist PD, Pennycook SJ (1996) Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274:413CrossRefGoogle Scholar
  25. 25.
    Hansen TW, Wagner JB, Hansen PL, Dahl S, Topsøe H, Jacobsen CJH (2001) Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294:1508Google Scholar
  26. 26.
    Weber WA, Gates BC (1997) Hexarhodium clusters in NaY zeolite: Characterization by infrared and extended X-ray absorption fine structure spectroscopies. J Phys Chem B 101:10423CrossRefGoogle Scholar
  27. 27.
    Goellner JF, Gates BC, Vayssilov GN, Rösch N (2000) Structure and bonding of a site-isolated transition metal complex: Rhodium dicarbonyl in highly dealuminated zeolite Y. J Am Chem Soc 122:8056CrossRefGoogle Scholar
  28. 28.
    Guzman J, Gates BC (2003) Structure and reactivity of a mononuclear gold-complex catalyst supported on magnesium oxide. Angew Chem Int Ed 42:690CrossRefGoogle Scholar
  29. 29.
    Guzman J, Anderson BG, Vinod CP, Ramesh K, Niemantsverdriet JW, Gates BC (2005) Synthesis and reactivity of dimethyl gold complexes supported on MgO: Characterization by infrared and X-ray absorption spectroscopies. Langmuir 21:3675CrossRefGoogle Scholar
  30. 30.
    Costello CK, Guzman J, Yang JH, Wang YM, Kung MC, Gates BC, Kung HH (2004) Activation of Au/γ-Al2O3 catalysts for CO oxidation: Characterization by X-ray absorption near edge structure and temperature programmed reduction. J Phys Chem B 108:12529CrossRefGoogle Scholar
  31. 31.
    Guzman J, Kuba S, Fierro-Gonzalez JC, Gates BC (2004) Formation of gold clusters on TiO2 from adsorbed Au(CH3)2(C5H7O2): Characterization by X-ray absorption spectroscopy. Catal Lett 95:77CrossRefGoogle Scholar
  32. 32.
    Guzman J, Gates BC (2004) A mononuclear gold complex catalyst supported on MgO: Spectroscopic characterization during ethylene hydrogenation catalysis. J Catal 226:111CrossRefGoogle Scholar
  33. 33.
    Dufaud V, Basset J-M (1998) Catalytic hydrogenolysis at low temperature and pressure of polyethylene and polypropylene to diesels or lower alkanes by a zirconium hydride supported on silica-alumina: A step toward polyolefin degradation by the microscopic reverse of Ziegler-Natta polymerization. Angew Chem Int Ed 37:806CrossRefGoogle Scholar
  34. 34.
    Chabanas M, Vidal V, Copéret C, Thivolle-Cazat J, Basset J-M (2002) Low-temperature hydrogenolysis of alkanes catalyzed by a silica-supported tantalum hydride complex, and evidence for a mechanistic switch from group IV to group V metal surface hydride complexes. Angew Chem Int Ed 39:1962CrossRefGoogle Scholar
  35. 35.
    Joubert J, Delbecq F, Copéret C, Basset JM, Sautet P (2008) Gamma-alumina: An active support to obtain immobilized electron poor Zr complexes. Top Catal 48:114Google Scholar
  36. 36.
    Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M (1997) Metathesis of alkanes catalyzed by silica-supported transition metal hydrides. Science 276:99CrossRefGoogle Scholar
  37. 37.
    Vidal V, Théolier A, Thivolle-Cazat J, Basset J-M, Corker J (1996) Synthesis, characterization, and reactivity, in the C-H bond activation of cycloalkanes, of a silica-supported tantalum(III) monohydride complex: (≡SiO)2TaIII-H. J Am Chem Soc 118:4595CrossRefGoogle Scholar
  38. 38.
    Maury O, Lefort L, Vidal V, Thivolle-Cazat J, Basset J-M (1999) Metathesis of alkanes: Evidence for degenerate metathesis of ethane over a silica-supported tantalum hydride prepared by surface organometallic chemistry. Angew Chem Int Ed 38:1952CrossRefGoogle Scholar
  39. 39.
    Copéret C, Maury O, Thivolle-Cazat J, Basset J-M (2001) σ-Bond metathesis of alkanes on a silica-supported tantalum(V) alkyl alkylidene complex: First evidence for alkane cross-metathesis. Angew Chem Int Ed 40:2331CrossRefGoogle Scholar
  40. 40.
    Fung AS, Tooley PA, Kelley MJ, Koningsberger DC, Gates BC (1991) Cationic trirhenium rafts on γ-alumina: Characterization by X-ray absorption spectroscopy. J Phys Chem 95:225CrossRefGoogle Scholar
  41. 41.
    Kirlin PS, van Zon FBM, Koningsberger DC, Gates BC (1990) Surface catalytic sites prepared from [HRe(CO)5] and [H3Re3(CO)12]: Mononuclear, trinuclear, and metallic rhenium catalysts supported on magnesia. J Phys Chem 94:8439CrossRefGoogle Scholar
  42. 42.
    Alexeev O, Panjabi G, Gates BC (1998) Partially decarbonylated tetrairidium clusters on γ-Al2O3: Structural characterization and catalysis of toluene hydrogenation. J Catal 173:196CrossRefGoogle Scholar
  43. 43.
    Goellner JF, Guzman J, Gates BC (2002) Synthesis and structure of tetrairidium clusters on TiO2 powder: Characterization by infrared and extended X-ray absorption fine structure spectroscopies. J Phys Chem B 106:1229CrossRefGoogle Scholar
  44. 44.
    Maloney SD, van Zon FBM, Kelley MJ, Koningsberger DC, Gates BC (1990) A well-defined supported metal catalyst: Ir4/MgO. Catal Lett 5:161CrossRefGoogle Scholar
  45. 45.
    Kawi S, Chang J-R, Gates BC (1993) Tetrairidium clusters supported on γ-alumina: Formation from [Ir4(CO)12] and carbon monoxide-induced morphology changes. J Phys Chem 97:5375CrossRefGoogle Scholar
  46. 46.
    Li F, Gates BC (2003) Synthesis and structural characterization of iridium clusters formed inside and outside the pores of zeolite NaY. J Phys Chem B 107:11589CrossRefGoogle Scholar
  47. 47.
    Argo AM, Gates BC (2003) MgO-Supported Rh6 and Ir6: Structural characterization during the catalysis of ethene hydrogenation. J Phys Chem B 107:5519CrossRefGoogle Scholar
  48. 48.
    Alexeev OS, Kim D-W, Gates BC (2000) Partially decarbonylated tetrairidium clusters on MgO: Structural characterization and catalysis of toluene hydrogenation. J Mol Catal A: Chem 162:67CrossRefGoogle Scholar
  49. 49.
    Allard LF, Panjabi GA, Salvi SN, Gates BC (2002) Imaging of nearly uniform Os5C clusters dispersed on MgO powder. Nano Lett 2:381CrossRefGoogle Scholar
  50. 50.
    Bhirud VA, Panjabi G, Salvi SN, Phillips BL, Gates BC (2004) Nearly uniform MgO-supported pentaosmium cluster catalysts. Langmuir 20:6173CrossRefGoogle Scholar
  51. 51.
    Ferrari AM, Neyman KM, Mayer M, Staufer M, Gates BC, Rösch N (1999) Faujasite-supported Ir4 clusters: A density functional model study of metal-zeolite interactions. J Phys Chem B 103:5311CrossRefGoogle Scholar
  52. 52.
    Goellner JF, Neyman KM, Mayer M, Nörtemann F, Gates BC, Rösch N (2000) Ligand-free osmium clusters supported on MgO. A density functional study. Langmuir 6:2736Google Scholar
  53. 53.
    Vayssilov GN, Gates BC, Rösch N (2003) Oxidation of supported rhodium clusters by support hydroxy groups. Angew Chem Int Ed 42:1391CrossRefGoogle Scholar
  54. 54.
    Argo AM, Goellner JF, Phillips BL, Panjabi GA, Gates BC (2001) Reactivity of site-isolated metal clusters: Propylidyne on γ-Al2O3-Supported Ir4. J Am Chem Soc 123:2275CrossRefGoogle Scholar
  55. 55.
    Xu Z, Xiao F-S, Purnell SK, Alexeev O, Kawi S, Deutsch SE, Gates BC (1994) Size-dependent catalytic activity of supported metal clusters. Nature 372:346CrossRefGoogle Scholar
  56. 56.
    Argo AM, Odzak JF, Lai FS, Gates BC (2002) Observation of ligand effects during alkene hydrogenation catalysed by supported metal clusters. Nature 415:623CrossRefGoogle Scholar
  57. 57.
    Alexeev OS, Gates BC (2003) Supported bimetallic cluster catalysts. Ind Eng Chem Res 42:1571CrossRefGoogle Scholar
  58. 58.
    Alexeev O, Gates BC (2000) EXAFS characterization of supported metal-complex and metal-cluster catalysts made from organometallic precursors. Top Catal 10:273CrossRefGoogle Scholar
  59. 59.
    Nilekar AU, Xu Y, Zhang J, Vukmirovic MB, Sasaki K, Adzic RR, Mavrikakis M (2007) Bimetallic and ternary alloys for improved oxygen reduction catalysis. Top Catal 46:276Google Scholar
  60. 60.
    Alexeev OS, Graham GW, Shelef M, Adams RD, Gates BC (2002) γ-Al2O3-Supported PtRu clusters prepared from [Pt2Ru4(CO)18]: Characterization by infrared and extended X-ray absorption fine structure spectroscopies. J Phys Chem B 106:4697CrossRefGoogle Scholar
  61. 61.
    Kawi S, Alexeev O, Shelef M, Gates BC (1995) Highly dispersed MgO-supported model Pd-Mo catalysts prepared from bimetallic clusters. J Phys Chem 99:6926CrossRefGoogle Scholar
  62. 62.
    Shephard DS, Maschmeyer T, Sankar G, Thomas JM, Ozkaya D, Johnson BFG, Raja R, Oldroyd RD, Bell RG (1998) Preparation, characterization and performance of encapsulated copper-ruthenium bimetallic catalysts derived from molecular cluster carbonyl precursors. Chem Eur J 4:1214CrossRefGoogle Scholar
  63. 63.
    Fung AS, Kelley MJ, Koningsberger DC, Gates BC (1997) γ-Al2O3-Supported Re-Pt cluster catalyst prepared from [Re2Pt(CO)12]: Characterization by extended X-ray absorption fine structure spectroscopy and catalysis of methylcyclohexane dehydrogenation. J Am Chem Soc 119:5877CrossRefGoogle Scholar
  64. 64.
    Cariati E, Roberto D, Ugo R, Lucenti E (2003) The surface of inorganic oxides or zeolites as a nonconventional reaction medium for the selective synthesis of metal carbonyl complexes and clusters. Chem Rev 103:3707CrossRefGoogle Scholar
  65. 65.
    Shen G-C, Liu A-M, Shido T, Ichikawa M (1995) CO Hydrogenation towards higher alcohols catalyzed on SiO2-grafted and zeolite-entrapped Ru Co and RuCo bimetallic clusters: Their EXAFS and FTIR characterization and catalytic performances. Top Catal 2:141CrossRefGoogle Scholar
  66. 66.
    Ichikawa M, Rao L, Ito T, Fukuoka A (1989) Ensemble and ligand effects in selective alkane hydrogenolysis catalysed on well characterized RhIr and RhFe bimetallic clusters inside NaY zeolite. Faraday Discuss Chem Soc 87:321CrossRefGoogle Scholar
  67. 67.
    Sinfelt JH (1983) Bimetallic catalysts: Discoveries, concepts, and applications. Wiley, New YorkGoogle Scholar
  68. 68.
    Sinfelt JH (1991) Catalytic hydrogenolysis on metals. Catal Lett 9:159CrossRefGoogle Scholar
  69. 69.
    Via GH, Drake KF, Meitzner G, Lytle FW, Sinfelt JH (1990) Analysis of EXAFS data on bimetallic clusters. Catal Lett 5:25CrossRefGoogle Scholar
  70. 70.
    Ichikawa M, Rao L-F, Kimura T, Fukuoka A (1990) Heterogenized bimetallic clusters: Their structures and bifunctional catalysis. J Mol Catal 62:15CrossRefGoogle Scholar
  71. 71.
    Chandler BD, Schnabel AB, Pignolet LH (2001) Ensemble size effects on toluene hydrogenation and hydrogen chemisorption by supported bimetallic particle catalysts. J Phys Chem B 105:149CrossRefGoogle Scholar
  72. 72.
    Lin SD, Vannice MA (1993) Hydrogenation of aromatic hydrocarbons over supported platinum catalysts. I. Benzene hydrogenation. J Catal 143:539CrossRefGoogle Scholar
  73. 73.
    Corker J, Lefebvre F, Lécuyer C, Dufaud V, Quignard F, Choplin A, Evans J, Basset J-M (1996) Catalytic cleavage of the C-H and C-C bonds of alkanes by surface organometallic chemistry: An EXAFS and IR characterization of a Zr-H catalyst. Science 271:966CrossRefGoogle Scholar
  74. 74.
    Fierro-Gonzalez JC, Bhirud VA, Gates BC (2005) A highly active catalyst for CO oxidation at 298 K: Mononuclear AuIII complexes anchored to La2O3 nanoparticles. Chem Commun November:5275Google Scholar
  75. 75.
    Asakura K, Yamada M, Iwasawa Y, Kuroda H (1985) Spectroscopic studies on the surface structures of ruthenium catalysts derived from triruthenium dodecacarbonyl/γ-aluminum oxide or -silicon dioxide. Chem Lett 14:511Google Scholar
  76. 76.
    Binsted N, Evans J, Greaves GN, Price RJ (1989) Characterization of supported rhodium and ruthenium carbonyl clusters by EXAFS spectroscopy. Organometallics 8:613CrossRefGoogle Scholar
  77. 77.
    Deutsch SE, Chang J-R, Gates BC (1993) Osmium subcarbonyls on γ-alumina: Characterization of the metal-support bonding by infrared, nuclear magnetic resonance, and X-ray absorption spectroscopies. Langmuir 9:1284CrossRefGoogle Scholar
  78. 78.
    Duivenvoorden FBM, Koningsberger DC, Uh YS, Gates BC (1986) Structures of alumina-supported osmium clusters (HOs3(CO)10{OAl}) and complexes (OsII(CO)n{OAl}3) (n = 2 or 3) determined by extended X-ray absorption fine structure spectroscopy. J Am Chem Soc 108:6254CrossRefGoogle Scholar
  79. 79.
    Ehresmann JO, Kletnieks PW, Liang AJ, Bhirud VA, Bagatchenko OP, Lee EJ, Klaric M, Gates BC, Haw JF (2006) Evidence from NMR and EXAFS studies of a dynamically uniform mononuclear single-site zeolite-supported rhodium catalyst. Angew Chem Int Ed 45:574CrossRefGoogle Scholar
  80. 80.
    Bhirud VA, Ehresmann JO, Kletnieks PW, Haw JF, Gates BC (2006) Rhodium complex with ethylene ligands supported on highly dehydroxylated MgO: Synthesis, characterization, and reactivity. Langmuir 22:490Google Scholar
  81. 81.
    H. F. J. van’t Blik, J. B. A. D. van Zon, T. Huizinga, J. C.Vis, D. C. Koningsberger, R. Prins, Structure of rhodium in an ultradispersed rhodium/alumina catalyst as studied by EXAFS and other techniques, J. Am. Chem. Soc. 107 (1985) 3139.Google Scholar
  82. 82.
    Guzman J, Gates BC (2001) Gold nanoclusters supported on MgO: Synthesis, characterization, and evidence of Au6. Nano Lett 1:689CrossRefGoogle Scholar
  83. 83.
    Alexeev OS, Panjabi G, Phillips BL, Gates BC (2003) Carbonylation and decarbonylation of γ-Al2O3-supported hexarhodium clusters: Characterization by infrared, 13C NMR, and extended X-ray absorption fine structure spectroscopies. Langmuir 19:9494CrossRefGoogle Scholar
  84. 84.
    Bhirud VA, Goellner JF, Argo AM, Gates BC (2004) Hexarhodium clusters on lanthana: Synthesis, characterization, and catalysis of ethene hydrogenation. J Phys Chem B 108:9752CrossRefGoogle Scholar
  85. 85.
    Goellner JF, Gates BC (2001) Synthesis and characterization of site-isolated hexarhodium clusters on titania powder. J Phys Chem B 105:3269CrossRefGoogle Scholar
  86. 86.
    Asakura K, Iwasawa Y (1990) Surface structure and catalysis for CO hydrogenation of the supported Ru species derived from the Ru3(CO)12 inorganic oxides. J Chem Soc Faraday Trans 86:2657Google Scholar
  87. 87.
    Chang J-R, Koningsberger DC, Gates BC (1992) Structurally simple supported platinum clusters prepared from [Pt15(CO)30]2− on magnesium oxide. J Am Chem Soc 114:6460CrossRefGoogle Scholar
  88. 88.
    Lamb HH, Wolfer M, Gates BC (1990) A structurally simple supported metal catalyst prepared from decaosmium carbonyl clusters on magnesium oxide. J Chem Soc Chem Commun 1296Google Scholar
  89. 89.
    Shen JGC, Ichikawa M (1998) Intrazeolite anchoring of Co, Ru, and [Ru-Co] carbonyl clusters: Synthesis, characterization, and their catalysis for CO hydrogenation. J Phys Chem B 102:5602CrossRefGoogle Scholar
  90. 90.
    Tomishige K, Nagasawa Y, Lee U, Iwasawa Y (1997) Performance and characterization of a [PtMo6]/MgO catalyst: The catalytic activity for NO-CO reactions and structural analysis by EXAFS. Bull Chem Soc Jpn 70:1607CrossRefGoogle Scholar
  91. 91.
    Nashner MS, Somerville DM, Lane PD, Adler DL, Shapley JR, Nuzzo RG (1996) Bimetallic catalyst particle nanostructure. Evolution from molecular cluster precursors. J Am Chem Soc 118:12964CrossRefGoogle Scholar
  92. 92.
    Nashner MS, Frenkel AI, Adler DL, Shapley JR, Nuzzo RG (1997) Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J Am Chem Soc 119:7760CrossRefGoogle Scholar
  93. 93.
    Alexeev O, Graham GW, Shelef M, Gates BC (2000) γ-Al2O3-Supported Pt catalysts with extremely high dispersions resulting from Pt–W interactions. J Catal 190:157CrossRefGoogle Scholar
  94. 94.
    Borvornwattananont A, Bein T (1992) Reactivity of (trimethylstannyl)pentacarbonylmanganese in zeolite cavities. J Phys Chem 96:9447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum Engineering and the Center for Environmentally Beneficial CatalysisUniversity of KansasLawrenceUSA
  2. 2.BP Advanced Refining and New TechnologyNapervilleUSA

Personalised recommendations