Catalysis with Transition Metal Nanoparticles in Colloidal Solution: Heterogeneous or Homogeneous?

  • Christopher Tabor
  • Radha Narayanan
  • Mostafa A. El-Sayed


Heterogeneous nanocatalysis in solution-based reactions has been significantly explored in the past decade in hopes of developing highly recoverable and reusable catalysts. The vast amount of research in heterogeneous nanocatalysis by metal colloids has not yet uncovered the true mechanism behind the catalytic nature of such materials. From studies of catalytic shape dependence and nanoparticle stability during the course of various reactions, evidence has been reported that supports both homogeneous and heterogeneous mechanistic views. In this chapter the evidence of nanocatalyst shape dependence and stability is discussed with conclusions drawn on homogeneous and heterogeneous mechanisms.


Nanoparticle Surface Defect Site Homogeneous Catalyst Platinum Nanoparticles Palladium Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from the National Science Foundation (Grant CHE-0554668).


  1. 1.
    Schwartz J (1985) Alkane activation by oxide-bound organorhodium complexes. Acc Chem Res 18:302CrossRefGoogle Scholar
  2. 2.
    Weiner H, Trovarelli A, Finke RG (2003) Polyoxoanion-supported catalysis: evidence for a P2 W15 Nb3 O629--supported iridium cyclohexene oxidation catalyst starting from [n-Bu4 N]5 Na3 [(1,5-COD)Ir.P2 W15 Nb3 O62]. J Mol Catal A Chem 191:253CrossRefGoogle Scholar
  3. 3.
    Reetz MT, Breinbauer R, Wedemann P, Binger P (1998) Nanostructured nickel-clusters as catalysts in [3 + 2] cycloaddition reactions. Tetrahedron 54:1233CrossRefGoogle Scholar
  4. 4.
    John DA III, Lin Y, Finke RG (1996) A perspective on nanocluster catalysis: polyoxoanion and (n-C4 H9)4 N + stabilized Ir(0) 300 nanocluster “soluble heterogeneous catalysts”. J Mol Catal A Chem 114:29CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Thathagar MB, ten Elshof JE, Rothenberg G (2006) Pd nanoclusters in C-C coupling reactions: proof of leaching. Angew Chem Int Ed Engl 45:2886CrossRefGoogle Scholar
  7. 7.
    De Vries JG (2006) A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans 3:421CrossRefGoogle Scholar
  8. 8.
    Di L, Sun C, Huang Y, Li J, Chen S (2005) Surface effects of monolayer-protected gold nanoparticles on the redox reactions between ferricyanide and thiosulfate. Sci China B 48:424CrossRefGoogle Scholar
  9. 9.
    Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh SK, Pal T (2007) Synthesis and size-selective catalysis by supported gold nanoparticles: study on heterogeneous and homogeneous catalytic process. J Phys Chem C 111:4596CrossRefGoogle Scholar
  10. 10.
    Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Catal A Chem 198:317CrossRefGoogle Scholar
  11. 11.
    Phan NTS, Van Der Sluys M, Jones CW (2006) On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings – homogeneous or heterogeneous catalysis, a critical review. Adv Synth Catal 348:609CrossRefGoogle Scholar
  12. 12.
    Freund PL, Spiro M (1986) Catalysis by colloidal gold of the reaction between ferricyanide and thiosulfate ions. J Chem Soc, Faraday Trans 1 82:2277CrossRefGoogle Scholar
  13. 13.
    Reetz MT, Westermann E (2000) Phosphane-free palladium-catalyzed coupling reactions: the decisive role of Pd nanoparticles. Angew Chem Int Ed Engl 39:165CrossRefGoogle Scholar
  14. 14.
    Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663CrossRefGoogle Scholar
  15. 15.
    Yin L, Liebscher J (2007) Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem Rev 107:133CrossRefGoogle Scholar
  16. 16.
    Collman JP, Kosydar KM, Bressan M, Lamanna W, Garrett T (1984) Polymer-bound substrates: a method to distinguish between homogeneous and heterogeneous catalysis. J Am Chem Soc 106:2569CrossRefGoogle Scholar
  17. 17.
    Lipshutz BH, Tasler S, Chrisman W, Spliethoff B, Tesche B (2003) On the nature of the ‘heterogeneous’ catalyst: nickel-on-charcoal. J Org Chem 68:1177CrossRefGoogle Scholar
  18. 18.
    Zhao F, Murakami K, Shirai M, Arai M (2000) Recyclable homogeneous/heterogeneous catalytic systems for heck reaction through reversible transfer of palladium species between solvent and support. J Catal 194:479CrossRefGoogle Scholar
  19. 19.
    Freund PL, Spiro M (1985) Colloidal catalysis: the effect of sol size and concentration. J Phys Chem 89:1074CrossRefGoogle Scholar
  20. 20.
    Li Y, Petroski J, El-Sayed MA (2000) Activation energy of the reaction between hexacyanoferrate(III) and thiosulfate ions catalyzed by platinum nanoparticles. J Phys Chem B 104:10956CrossRefGoogle Scholar
  21. 21.
    Sharma RK, Sharma P, Maitra A (2003) Size-dependent catalytic behavior of platinum nanoparticles on the hexacyanoferrate(III)/thiosulfate redox reaction. J Colloid Interface Sci 265:134CrossRefGoogle Scholar
  22. 22.
    Ghosh SK, Kundu S, Mandal M, Pal T (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in a micellar medium. Langmuir 18:8756CrossRefGoogle Scholar
  23. 23.
    Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266CrossRefGoogle Scholar
  24. 24.
    Tsunoyama H, Sakurai H, Tsukuda T (2006) Size effect on the catalysis of gold clusters dispersed in water for aerobic oxidation of alcohol. Chem Phys Lett 429:528CrossRefGoogle Scholar
  25. 25.
    Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247CrossRefGoogle Scholar
  26. 26.
    Deshpande VM , Singh P, Narasimhan CS (1990) Synthesis of a stable platinum organosol and its application for reduction of nitrobenzene to aniline. J Chem Soc Chem Commun 17:1181Google Scholar
  27. 27.
    Hsin Yu L, Hwang Kuo C, Yeh C-T (2007) Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc 129:9999CrossRefGoogle Scholar
  28. 28.
    Nitani H, Nakagawa T, Daimon H, Kurobe Y, Ono T, Honda Y, Koizumi A, Seino S, Yamamoto TA (2007) Methanol oxidation catalysis and substructure of PtRu bimetallic nanoparticles. Appl Catal A Gen 326:194CrossRefGoogle Scholar
  29. 29.
    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20Google Scholar
  30. 30.
    Spiro M, Freund PL (1983) Colloidal catalysis: transport versus surface control. J Chem Soc, Faraday Trans 1 79:1649CrossRefGoogle Scholar
  31. 31.
    Ott LS, Finke RG (2007) Transition-metal nanocluster stabilization for catalysis: a critical review of ranking methods and putative stabilizers. Coord Chem Rev 251:1075CrossRefGoogle Scholar
  32. 32.
    Yang J, Lee JY, Too H-P (2006) Size effect in thiol and amine binding to small Pt nanoparticles. Anal Chim Acta 571:206CrossRefGoogle Scholar
  33. 33.
    Kumar A, Mandal S, Selvakannan PR, Pasricha R, Mandale AB, Sastry M (2003) Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277CrossRefGoogle Scholar
  34. 34.
    Pong B-K, Lee J-Y, Trout BL (2005) First principles computational study for understanding the interactions between ssDNA and gold nanoparticles: adsorption of methylamine on gold nanoparticulate surfaces. Langmuir 21:11599CrossRefGoogle Scholar
  35. 35.
    Narayanan R, El-Sayed MA (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4:1343CrossRefGoogle Scholar
  36. 36.
    Strongin DR, Carrazza J, Bare SR, Somorjai GA (1987) The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J Catal 103:213CrossRefGoogle Scholar
  37. 37.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272:1924CrossRefGoogle Scholar
  38. 38.
    Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732CrossRefGoogle Scholar
  39. 39.
    Narayanan R, El-Sayed MA (2004) Changing catalytic activity during colloidal platinum nanocatalysis due to shape changes: electron-transfer reaction. J Am Chem Soc 126:7194CrossRefGoogle Scholar
  40. 40.
    Narayanan R, El-Sayed MA (2004) Effect of nanocatalysis in colloidal solution on the tetrahedral and cubic nanoparticle shape: electron-transfer reaction catalyzed by platinum nanoparticles. J Phys Chem B 108:5726CrossRefGoogle Scholar
  41. 41.
    Sillen LS, Martell AE (1964) Stability constants of metal-ion complexes. Metcalfe & Cooper, EnglandGoogle Scholar
  42. 42.
    Narayanan R, El-Sayed MA (2005) Raman studies on the interaction of the reactants with the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction. J Phys Chem B 109:18460CrossRefGoogle Scholar
  43. 43.
    Mahmoud MA, El-Sayed MA (2007) Reaction of platinum nanocatalyst with the ferricyanide reactant to produce Prussian blue analog complexes. J Phys Chem C 111:17180CrossRefGoogle Scholar
  44. 44.
    Stille JK, Chen AT (1971) Synthesis and copolymerization of tetrazolyl substituted styrenes. Thermal crosslinking of copolymers containing dipolarophiles and the tetrazole dipole precursor. Polymer Prepr 12:1Google Scholar
  45. 45.
    Campbell IB (1994) The sonogashira Cu-Pd-catalyzed alkyne coupling reaction. In: Organocopper Reagents. Oxford: Oxford University Press, 217.Google Scholar
  46. 46.
    Miyaura N, Yanagi T, Suzuki A (1981) The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases. Synth Commun 11:513CrossRefGoogle Scholar
  47. 47.
    Heck RF, Nolley JP Jr (1972) Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J Org Chem 37:2320CrossRefGoogle Scholar
  48. 48.
    Narayanan R, El-Sayed MA (2005) Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction. Langmuir 21:2027CrossRefGoogle Scholar
  49. 49.
    Hashim J, Kappe CO (2007) Synthesis of symmetrical bisquinolones via nickel(0)-catalyzed homocoupling of 4-chloroquinolones. Adv Synth Catal 349:2353CrossRefGoogle Scholar
  50. 50.
    Beller M, Fischer H, Kuehlein K, Reisinger CP, Herrmann WA (1996) First palladium-catalyzed Heck reactions with efficient colloidal catalyst systems. J Organomet Chem 520:257CrossRefGoogle Scholar
  51. 51.
    Reetz MT, Lohmer G (1996) Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions. Chem Commun (Camb) 16:1921Google Scholar
  52. 52.
    Le Bars J, Specht U, Bradley JS, Blackmond DG (1999) A catalytic probe of the surface of colloidal palladium particles using Heck coupling reactions. Langmuir 15:7621CrossRefGoogle Scholar
  53. 53.
    Li Y, Hong XM, Collard DM, El-Sayed MA (2000) Suzuki cross-coupling reactions catalyzed by palladium nanoparticles in aqueous solution. Org Lett 2:2385CrossRefGoogle Scholar
  54. 54.
    Li Y, Boone E, El-Sayed MA (2002) Size effects of PVP-Pd nanoparticles on the catalytic Suzuki reactions in aqueous solution. Langmuir 18:4921CrossRefGoogle Scholar
  55. 55.
    Jeffery T (1996) On the efficiency of tetraalkylammonium salts in Heck type reactions. Tetrahedron 52:10113CrossRefGoogle Scholar
  56. 56.
    de Vries AHM, Mulders JMCA, Mommers JHM, Henderickx HJW, de Vries JG (2003) Homeopathic ligand-free palladium as a catalyst in the Heck reaction. A comparison with a palladacycle. Org Lett 5:3285CrossRefGoogle Scholar
  57. 57.
    Narayanan R, El-Sayed MA (2004) Effect of colloidal catalysis on the nanoparticle size distribution: dendrimer-Pd vs PVP-Pd nanoparticles catalyzing the Suzuki coupling reaction. J Phys Chem B 108:8572CrossRefGoogle Scholar
  58. 58.
    Cassol CC, Umpierre AP, Machado G, Wolke SI, Dupont J (2005) The role of Pd nanoparticles in ionic liquid in the Heck reaction. J Am Chem Soc 127:3298CrossRefGoogle Scholar
  59. 59.
    Narayanan R, El-Sayed MA (2005) FTIR study of the mode of binding of the reactants on the Pd nanoparticle surface during the catalysis of the Suzuki reaction. J Phys Chem B 109:4357CrossRefGoogle Scholar
  60. 60.
    Prockl Sandra S, Kleist W, Gruber Markus A, Kohler K (2004) In situ generation of highly active dissolved palladium species from solid catalysts-a concept for the activation of aryl chlorides in the Heck reaction. Angew Chem Int Ed Engl 43:1881CrossRefGoogle Scholar
  61. 61.
    Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD (2005) A reassessment of the transition-metal free Suzuki-type coupling methodology. J Org Chem 70:161CrossRefGoogle Scholar
  62. 62.
    De Vries AHM, Parlevliet FJ, Schmieder-Van De Vondervoort L, Mommers JHM, Henderickx HJW, Walet MAM, De Vries JG (2002) A practical recycle of a ligand-free palladium catalyst for Heck reactions. Adv Synth Catal 344:996CrossRefGoogle Scholar
  63. 63.
    Evans J, O’Neill L, Kambhampati VL, Rayner G, Turin S, Genge A, Dent AJ, Neisius T (2002) Structural characterisation of solution species implicated in the palladium-catalysed Heck reaction by Pd K-edge X-ray absorption spectroscopy: palladium acetate as a catalyst precursor. J Chem Soc, Dalton Trans 10:2207Google Scholar
  64. 64.
    Gniewek A, Trzeciak AM, Ziolkowski JJ, Kepinski L, Wrzyszcz J, Tylus W (2005) Pd-PVP colloid as catalyst for Heck and carbonylation reactions: TEM and XPS studies. J Catal 229:332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Christopher Tabor
    • 1
  • Radha Narayanan
    • 1
  • Mostafa A. El-Sayed
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations