Skip to main content

Catalysis by Thin Oxide Films and Oxide Nanoparticles

  • Chapter
  • First Online:

Abstract

Model systems for transition and noble metal oxide catalysts, either as thin films or nanoparticles, were prepared by vacuum-deposition of oxides or oxidation of metals (particles, thin films, single crystals). These systems, including Ga2O3, In2O3, V2O3, V2O5, Nb2O5, Pd5O4 and PdO, are well suited for atomic scale characterization by surface-specific methods and for catalytic tests. Investigations of structure and composition were carried out by HRTEM, AFM, STM, SAED, LEED, EDX, XPS and DFT. In many cases, the surface structure of oxides does not coincide with truncations of the known bulk structures. The adsorption properties of the oxide models, in particular those of defects such as oxygen vacancies or step edges, were examined by vibrational spectroscopy (FTIR and SFG) and thermal desorption spectroscopy (TPD) of probe molecules (CO, H2, propane and propene). Together with XPS, quantification of surface coverage was performed. The catalytic activity and selectivity of the model oxides at (near) ambient gas pressure were investigated by microreactor studies of methanol steam reforming (MSR), (inverse) water gas shift (WGS) and CO oxidation. The structural/compositional flexibility of oxides leads to significant challenges in their characterization but also imparts them with exceptional catalytic properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Henrich VE, Cox PA (1994). The surface science of metal oxides. Cambridge: Cambridge University Press

    Google Scholar 

  2. Ertl G, Knözinger H, Schüth F, Weitkamp J (2008). Handbook of heterogeneous catalysis. VCH-Verlag: Weinheim

    Book  Google Scholar 

  3. Freund H-J (2002). Clusters and islands on oxides: from catalysis via electronics and magnetism to optics. Surf Sci, 500, 271

    Article  CAS  Google Scholar 

  4. Noguera C (2000). Polar oxide surfaces. J Phys Condens Matter, 12, R367

    Article  CAS  Google Scholar 

  5. Diebold U (2003). The surface science of titanium dioxide. Surf Sci Rep, 48, 53

    Article  CAS  Google Scholar 

  6. Wöll C (2007). The chemistry and physics of zinc oxide surfaces. Prog Surf Sci, 82, 55

    Article  Google Scholar 

  7. Al-Abadleh HA, Grassian VH (2003). Oxide surfaces as environmental interfaces. Surf Sci Rep, 52, 63

    Article  CAS  Google Scholar 

  8. Freund H.-J, Goodman DW (2008). Ultrathin oxide films. In G. Ertl, H. Knözinger, F. Schüth J. Weitkamp (Eds.), Handbook of heterogeneous catalysis. Weinheim: Wiley-VCH

    Google Scholar 

  9. Thornton G (2006). Manipulating single atoms. Nat Mater, 5, 189

    Article  Google Scholar 

  10. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, et al. (2005). Electron localization determines defect formation on ceria substrates. Science, 309, 752

    Article  CAS  Google Scholar 

  11. Föttinger K, Schlögl R, Rupprechter G (2008). The mechanism of carbonate formation on Pd-Al2O3 catalysts. Chem Commun, 3, 320

    Article  Google Scholar 

  12. Bandara A, Haija MA, Höbel F, Kuhlenbeck H, Rupprechter G, Freund H-J (2007). Molecular adsorption on V2O3(0001)/Au(111) surfaces. Top Catal, 46, 223

    Article  CAS  Google Scholar 

  13. Guimond S, Haija MA-A, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S. K et al. (2006). Vanadium oxide surfaces and supported vanadium oxide nanoparticles. Top Catal, 38, 117

    Article  CAS  Google Scholar 

  14. Jochum W, Penner S, Kramer R, Föttinger K, Rupprechter G, Klötzer B (2008). Defect formation and water–gas shift activity on polycrystalline β-Ga2O3. J Catal, 256, 278

    Article  CAS  Google Scholar 

  15. Beato P, Blume A, Girgsdies F, Jentoft RE, Schlögl R, Timpe O, et al. (2006). Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Appl Catal A: Gen, 307, 137

    Article  CAS  Google Scholar 

  16. Knözinger H, Gates BC (Eds) (2006/2007) Advances in catalysis, vol. 50–52

    Google Scholar 

  17. Kuhlenbeck H, Freund H-J (2006). Adsorption on oxide surface. In H. P. Bonzel (Ed.), Landolt-Börnstein: physics of covered solid surfaces (Vol. III-42, p. 332). New York: Springer.

    Google Scholar 

  18. Barth C, Henry CR (2003). Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett, 91, 196102

    Article  Google Scholar 

  19. Kulawik M, Nilius N, Rust H-P, Freund H-J (2003). Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). Phys Rev Lett, 91, 256101

    Article  CAS  Google Scholar 

  20. Kresse G, Schmid M, Napetschnig E, Shishkin M, Köhler L, Varga P (2005). Structure of the ultrathin aluminum oxide film on NiAl(110). Science, 308, 1440

    Article  CAS  Google Scholar 

  21. Stierle A, Renner F, Streitel R, Dosch H, Drube W, Cowie BC (2004). X-ray diffraction study of the ultrathin Al2O3 layer on NiAl(110). Science, 303, 1652

    Article  CAS  Google Scholar 

  22. Rupprechter G, Seeber G, Goller H, Hayek K (1999). Structure-activity correlations on Rh/Al2O3 and Rh/TiO2 thin film model catalysts after oxidation and reduction. J Catal, 186, 201

    Article  CAS  Google Scholar 

  23. Rupprechter G (2001). Surface vibrational spectroscopy from ultrahigh vacuum to atmospheric pressure: adsorption and reactions on single crystals and nanoparticle model catalysts monitored by sum frequency generation spectroscopy. Phys Chem Chem Phys, 3, 4621

    Article  CAS  Google Scholar 

  24. Fuchs M, Jenewein B, Penner S, Hayek K, Rupprechter G, Wang D, et al. (2005). Interaction of Pt and Rh nanoparticles with ceria and silica supports: ring opening of methylcyclobutane and CO hydrogenation after reduction at 373–723 K. Appl Catal A: Gen, 294, 279

    Article  CAS  Google Scholar 

  25. Penner S, Klötzer B, Jenewein B (2007). Structural and redox properties of VOx and Pd/VOx thin film model catalysts studied by TEM and SAED. Phys Chem Chem Phys, 9, 2428

    Article  CAS  Google Scholar 

  26. Penner S, Klötzer B, Jenewein B, Klauser F, Liu X, Bertel E (2008). Growth and stability of Ga2O3 nanospheres. Thin Solid Films, 516, 4742

    Article  CAS  Google Scholar 

  27. Lorenz H, Stöger-Pollach M, Schwarz S, Bernardi J, Pfaller K, Klötzer B, et al. (2008). A new preparation pathway to well-defined In2O3 nanoparticles at low substrate temperatures. J Phys Chem C, 112, 918

    Article  CAS  Google Scholar 

  28. Hayek K, Fuchs M, Klötzer B, Reichl W, Rupprechter G (2000). Studies of metal-support interactions with “real” and “inverted” model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Top Catal, 13, 55

    Article  CAS  Google Scholar 

  29. Collins SE, Baltanas ML, Fierro JLG, Bonivardi AL (2002). Gallium-hydrogen bond formation on gallium and palladium-gallium silica-supported catalysts. J Catal, 211, 252

    CAS  Google Scholar 

  30. Iwasa N, Takezawa N (2003). New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal, 22, 215

    Article  CAS  Google Scholar 

  31. Jochum W, Penner S, Föttinger K, Kramer R, Rupprechter G, Klötzer B (2008). Hydrogen on polycrystalline b-Ga2O3: surface chemisorption, defect formation and reactivity. J Catal, 256, 268

    Article  CAS  Google Scholar 

  32. Umegaki T, Kuratani K, Yamada Y, Ueda A, Kuriyma N, Kobayashi T, et al. (2008). Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts. J Power Sources, 179, 566

    Article  CAS  Google Scholar 

  33. Lorenz H, Stöger-Pollach M, Schwarz S, Bernardi J, Pfaller K, Klötzer B, et al. (2008). Novel methanol steam reforming activity and selectivity of pure In2O3. Appl Catal A: Gen, 347, 34

    Article  CAS  Google Scholar 

  34. Hao Y, Meng G, Ye C, Zhang L. (2005). Controlled synthesis of In2O3 octahedrons and nanowires. Cryst Growth Des, 5, 1617

    Article  CAS  Google Scholar 

  35. Tatibouet JM (1997). Methanol oxidation as a catalyst surface probe. Appl Catal A: Gen, 148, 213

    Article  Google Scholar 

  36. Penner S, Wang D, Schlögl R, Hayek K (2005). Rh particles supported by thin vanadia films as model systems for catalysis: an electron microscopy study. Thin Solid Films, 484, 10

    Article  CAS  Google Scholar 

  37. Honma K, Yoshinaka M, Hirota K, Yamaguchi O, Asia J, Makiyama Y (1996). Fabrication, microstructure and electrical conductivity of V2O5 ceramics. Mater Res Bull, 31, 531

    Article  CAS  Google Scholar 

  38. Bäumer M, Freund H-J (1999). Metal deposits on well-ordered oxide films. Prog Surf Sci, 61, 127

    Article  Google Scholar 

  39. Heemeier M, Stempel S, Shaikhutdinov S, Libuda J, Bäumer M, Oldman RJ, et al. (2003). On the thermal stability of metal particles supported on a thin alumina film. Surf Sci, 523, 103

    Article  CAS  Google Scholar 

  40. Libuda J, Winkelmann F, Bäumer M, Freund H-J, Bertrams T, Neddermeyer H, et al. (1994). Structure and defects of an ordered alumina film on NiAl(110). Surf Sci, 318, 61

    Article  CAS  Google Scholar 

  41. Rupprechter G, Dellwig T, Unterhalt H, Freund H-J (2001). CO adsorption on Ni(100) and Pt(111) studied by infrared-visible sum frequency generation spectroscopy: design and application of an SFG-compatible UHV-high-pressure reaction cell. Top Catal, 15, 19

    Article  CAS  Google Scholar 

  42. Rupprechter G (2007). Sum frequency generation and polarization-modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv Catal, 51, 133

    Article  CAS  Google Scholar 

  43. Wachs IE (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today, 100, 79

    Article  CAS  Google Scholar 

  44. Starr DE, Mendes FMT, Middeke J, Blum R-P, Niehus H, Lahav D, et al. (2005). Preparation and characterization of well-ordered, thin niobia films on a metal substrate. Surf Sci, 599, 14

    Article  CAS  Google Scholar 

  45. Höbel F, Bandara A, Rupprechter G, Freund H-J (2006). Deactivation of Pd particles supported on Nb2O5/Cu3Au(100): SFG and TPD studies from UHV to 100 mbar. Surf Sci, 600, 963

    Article  Google Scholar 

  46. Iglesia E (1997). Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A, 161, 59

    Article  CAS  Google Scholar 

  47. Middeke J, Blum R-P, Hafemeister M, Niehus H (2005). Controlled preparation of well-ordered transition metal oxide layers on a metallic surface. Surf Sci, 587, 219

    Article  CAS  Google Scholar 

  48. Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000). Bridging the pressure and materials gaps: high pressure sum frequency generation study on supported Pd nanoparticles. Phys Rev Lett, 85, 776

    Article  CAS  Google Scholar 

  49. Shen YR (1994). Surfaces probed by nonlinear optics. Surf Sci, 299/300, 551

    Article  Google Scholar 

  50. Bandara A, Dobashi S, Kubota J, Onda K, Wada A, Domen K, et al. (1997). Adsorption of CO and NO on NiO(111)/Ni(111) surface studied by infrared-visible sum frequency generation spectroscopy. Surf Sci, 387, 312

    Article  Google Scholar 

  51. Rupprechter G (2007). A surface science approach to ambient pressure catalytic reactions. Catal Today, 126, 3

    Article  CAS  Google Scholar 

  52. Morkel M, Unterhalt H, Klüner T, Rupprechter G, Freund H-J (2005). Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces. Surf Sci, 586, 146

    Article  CAS  Google Scholar 

  53. Mendes, F. M. T, Uhl, A, Starr, D. E, Guimond, S, Schmal, M, Kuhlenbeck, H, et al. (2006). Strong metal support interaction on Co/niobia model catalysts. Catal Lett, 111, 35

    Article  CAS  Google Scholar 

  54. Surnev S, Ramsey MG, Netzer FP (2003). Vanadium oxide surface studies. Prog Surf Sci, 73, 117

    Article  CAS  Google Scholar 

  55. Schoiswohl J, Sock M, Chen Q, Thornton G, Kresse G, Ramsey MG, et al. (2007). Metal supported oxide nanostructures: model systems for advanced catalysis. Top Catal, 46, 137

    Article  CAS  Google Scholar 

  56. Magg N, Giorgi J, Frank M, Immaraprorn B, Schroeder T, Bäumer M, et al. (2004). Alumina-supported vanadium nanoparticles: structural characterization and CO adsorption properties. J Am Chem Soc, 126, 3616

    Article  CAS  Google Scholar 

  57. Demoulin O, Rupprechter G, Seunier I, Clef BL, Navez M, Ruiz P (2005). Investigation of parameters influencing the activation of a Pd/γ-alumina catalyst during methane combustion. J Phys Chem B, 109, 20454

    Article  CAS  Google Scholar 

  58. Rupprechter G, Weilach C (2008). Vibrational studies of surface-gas interactions at ambient pressure. J Phys: Condens Matter, 20, 184020

    Article  Google Scholar 

  59. Gabasch H, Hayek K, Klötzer B, Unterberger W, Kleimenov E, Teschner D, et al. (2007). Methane oxidation on Pd(111): in situ XPS identification of active phase. J Phys Chem C, 111, 7957

    Article  CAS  Google Scholar 

  60. Hendriksen BLM, Bobaru SC, Frenken JWM (2005). Bistability and oscillations in CO oxidation studied with scanning tunnelling microscopy inside a reactor. Catal Today, 105, 234

    Article  CAS  Google Scholar 

  61. Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, et al. (2005). Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett, 95, 255505

    Article  CAS  Google Scholar 

  62. Gustafson J, Westerström R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, et al. (2008). Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B, 78, 045423

    Article  Google Scholar 

  63. Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006). Surface oxides on close-packed surfaces of late transition metals. J Phys: Condens Matter, 18, 481

    Article  Google Scholar 

  64. Gabasch H, Unterberger W, Hayek K, Klötzer B, Kleimenov E, Teschner D, et al. (2006). In situ XPS study of Pd(111) oxidation at elevated pressure, Part 2: palladium oxidation in the 10–1 mbar range. Surf Sci, 600, 2980

    Article  CAS  Google Scholar 

  65. Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M. (2005). In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc, 127, 18269

    Article  CAS  Google Scholar 

  66. Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, et al. (2007). Comparison of the reactivity of different Pd-O species in CO oxidation. Phys Chem Chem Phys, 9, 533

    Article  CAS  Google Scholar 

  67. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, et al. (2002). Two-dimensional oxide on Pd(111). Phys Rev Lett, 88, 246103

    Article  CAS  Google Scholar 

  68. Logan AD, Braunschweig EJ, Datye AK, Smith DJ (1989). The oxidation of small rhodium metal particles. Ultramicroscopy, 31, 132

    Article  CAS  Google Scholar 

  69. Bernal S, Botana FJ, Calvino JJ, Cifredo GA, Pérez-Omil JA, Pintado JM (1995). HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal Today, 23, 219

    Article  CAS  Google Scholar 

  70. Rupprechter G, Hayek K, Hofmeister H (1998). Electron microscopy of thin-film model catalysts: activation of alumina-supported rhodium nanoparticles. J Catal, 173, 409

    Article  CAS  Google Scholar 

  71. Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund H-J (2006). CO oxidation on partially oxidized Pd nanoparticles. J Catal, 242, 58

    Article  CAS  Google Scholar 

  72. Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, et al. (2005). Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew Chem Int Ed Engl, 44, 7601

    Article  CAS  Google Scholar 

  73. Ertl G (1994). Reactions at well-defined surfaces. Surf Sci, 299/300, 742

    Article  Google Scholar 

  74. Kim J, Bondarchuk O, Kay BD, White JM, Dohnálek Z (2007). Preparation and characterization of monodispersed WO3 nanoclusters on TiO2(110). Catal Today, 120, 186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to those who contributed to the case studies discussed, in particular to A. Bandara, J. Bernardi, E. Bertel, M. Borasio, K. Föttinger, H.-J. Freund, K. Hayek, F. Höbel, W. Jochum, B. Kell, F. Klauser, B. Klötzer, R. Kramer, X. Liu, H. Lorenz, R. Schlögl, M. Stöger-Pollach and Ch. Weilach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Penner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rupprechter, G., Penner, S. (2010). Catalysis by Thin Oxide Films and Oxide Nanoparticles. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_17

Download citation

Publish with us

Policies and ethics