Catalysis by Thin Oxide Films and Oxide Nanoparticles

  • Günther Rupprechter
  • Simon Penner


Model systems for transition and noble metal oxide catalysts, either as thin films or nanoparticles, were prepared by vacuum-deposition of oxides or oxidation of metals (particles, thin films, single crystals). These systems, including Ga2O3, In2O3, V2O3, V2O5, Nb2O5, Pd5O4 and PdO, are well suited for atomic scale characterization by surface-specific methods and for catalytic tests. Investigations of structure and composition were carried out by HRTEM, AFM, STM, SAED, LEED, EDX, XPS and DFT. In many cases, the surface structure of oxides does not coincide with truncations of the known bulk structures. The adsorption properties of the oxide models, in particular those of defects such as oxygen vacancies or step edges, were examined by vibrational spectroscopy (FTIR and SFG) and thermal desorption spectroscopy (TPD) of probe molecules (CO, H2, propane and propene). Together with XPS, quantification of surface coverage was performed. The catalytic activity and selectivity of the model oxides at (near) ambient gas pressure were investigated by microreactor studies of methanol steam reforming (MSR), (inverse) water gas shift (WGS) and CO oxidation. The structural/compositional flexibility of oxides leads to significant challenges in their characterization but also imparts them with exceptional catalytic properties.


Scanning Tunneling Microscopy Thin Oxide Film Scanning Tunneling Microscopy Image Vanadium Oxide Methanol Steam 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to those who contributed to the case studies discussed, in particular to A. Bandara, J. Bernardi, E. Bertel, M. Borasio, K. Föttinger, H.-J. Freund, K. Hayek, F. Höbel, W. Jochum, B. Kell, F. Klauser, B. Klötzer, R. Kramer, X. Liu, H. Lorenz, R. Schlögl, M. Stöger-Pollach and Ch. Weilach.


  1. 1.
    Henrich VE, Cox PA (1994). The surface science of metal oxides. Cambridge: Cambridge University PressGoogle Scholar
  2. 2.
    Ertl G, Knözinger H, Schüth F, Weitkamp J (2008). Handbook of heterogeneous catalysis. VCH-Verlag: WeinheimCrossRefGoogle Scholar
  3. 3.
    Freund H-J (2002). Clusters and islands on oxides: from catalysis via electronics and magnetism to optics. Surf Sci, 500, 271CrossRefGoogle Scholar
  4. 4.
    Noguera C (2000). Polar oxide surfaces. J Phys Condens Matter, 12, R367CrossRefGoogle Scholar
  5. 5.
    Diebold U (2003). The surface science of titanium dioxide. Surf Sci Rep, 48, 53CrossRefGoogle Scholar
  6. 6.
    Wöll C (2007). The chemistry and physics of zinc oxide surfaces. Prog Surf Sci, 82, 55CrossRefGoogle Scholar
  7. 7.
    Al-Abadleh HA, Grassian VH (2003). Oxide surfaces as environmental interfaces. Surf Sci Rep, 52, 63CrossRefGoogle Scholar
  8. 8.
    Freund H.-J, Goodman DW (2008). Ultrathin oxide films. In G. Ertl, H. Knözinger, F. Schüth J. Weitkamp (Eds.), Handbook of heterogeneous catalysis. Weinheim: Wiley-VCHGoogle Scholar
  9. 9.
    Thornton G (2006). Manipulating single atoms. Nat Mater, 5, 189CrossRefGoogle Scholar
  10. 10.
    Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, et al. (2005). Electron localization determines defect formation on ceria substrates. Science, 309, 752CrossRefGoogle Scholar
  11. 11.
    Föttinger K, Schlögl R, Rupprechter G (2008). The mechanism of carbonate formation on Pd-Al2O3 catalysts. Chem Commun, 3, 320CrossRefGoogle Scholar
  12. 12.
    Bandara A, Haija MA, Höbel F, Kuhlenbeck H, Rupprechter G, Freund H-J (2007). Molecular adsorption on V2O3(0001)/Au(111) surfaces. Top Catal, 46, 223CrossRefGoogle Scholar
  13. 13.
    Guimond S, Haija MA-A, Kaya S, Lu J, Weissenrieder J, Shaikhutdinov S. K et al. (2006). Vanadium oxide surfaces and supported vanadium oxide nanoparticles. Top Catal, 38, 117CrossRefGoogle Scholar
  14. 14.
    Jochum W, Penner S, Kramer R, Föttinger K, Rupprechter G, Klötzer B (2008). Defect formation and water–gas shift activity on polycrystalline β-Ga2O3. J Catal, 256, 278CrossRefGoogle Scholar
  15. 15.
    Beato P, Blume A, Girgsdies F, Jentoft RE, Schlögl R, Timpe O, et al. (2006). Analysis of structural transformations during the synthesis of a MoVTeNb mixed oxide catalyst. Appl Catal A: Gen, 307, 137CrossRefGoogle Scholar
  16. 16.
    Knözinger H, Gates BC (Eds) (2006/2007) Advances in catalysis, vol. 50–52Google Scholar
  17. 17.
    Kuhlenbeck H, Freund H-J (2006). Adsorption on oxide surface. In H. P. Bonzel (Ed.), Landolt-Börnstein: physics of covered solid surfaces (Vol. III-42, p. 332). New York: Springer.Google Scholar
  18. 18.
    Barth C, Henry CR (2003). Atomic resolution imaging of the (001) surface of UHV cleaved MgO by dynamic scanning force microscopy. Phys Rev Lett, 91, 196102CrossRefGoogle Scholar
  19. 19.
    Kulawik M, Nilius N, Rust H-P, Freund H-J (2003). Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). Phys Rev Lett, 91, 256101CrossRefGoogle Scholar
  20. 20.
    Kresse G, Schmid M, Napetschnig E, Shishkin M, Köhler L, Varga P (2005). Structure of the ultrathin aluminum oxide film on NiAl(110). Science, 308, 1440CrossRefGoogle Scholar
  21. 21.
    Stierle A, Renner F, Streitel R, Dosch H, Drube W, Cowie BC (2004). X-ray diffraction study of the ultrathin Al2O3 layer on NiAl(110). Science, 303, 1652CrossRefGoogle Scholar
  22. 22.
    Rupprechter G, Seeber G, Goller H, Hayek K (1999). Structure-activity correlations on Rh/Al2O3 and Rh/TiO2 thin film model catalysts after oxidation and reduction. J Catal, 186, 201CrossRefGoogle Scholar
  23. 23.
    Rupprechter G (2001). Surface vibrational spectroscopy from ultrahigh vacuum to atmospheric pressure: adsorption and reactions on single crystals and nanoparticle model catalysts monitored by sum frequency generation spectroscopy. Phys Chem Chem Phys, 3, 4621CrossRefGoogle Scholar
  24. 24.
    Fuchs M, Jenewein B, Penner S, Hayek K, Rupprechter G, Wang D, et al. (2005). Interaction of Pt and Rh nanoparticles with ceria and silica supports: ring opening of methylcyclobutane and CO hydrogenation after reduction at 373–723 K. Appl Catal A: Gen, 294, 279CrossRefGoogle Scholar
  25. 25.
    Penner S, Klötzer B, Jenewein B (2007). Structural and redox properties of VOx and Pd/VOx thin film model catalysts studied by TEM and SAED. Phys Chem Chem Phys, 9, 2428CrossRefGoogle Scholar
  26. 26.
    Penner S, Klötzer B, Jenewein B, Klauser F, Liu X, Bertel E (2008). Growth and stability of Ga2O3 nanospheres. Thin Solid Films, 516, 4742CrossRefGoogle Scholar
  27. 27.
    Lorenz H, Stöger-Pollach M, Schwarz S, Bernardi J, Pfaller K, Klötzer B, et al. (2008). A new preparation pathway to well-defined In2O3 nanoparticles at low substrate temperatures. J Phys Chem C, 112, 918CrossRefGoogle Scholar
  28. 28.
    Hayek K, Fuchs M, Klötzer B, Reichl W, Rupprechter G (2000). Studies of metal-support interactions with “real” and “inverted” model systems: reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Top Catal, 13, 55CrossRefGoogle Scholar
  29. 29.
    Collins SE, Baltanas ML, Fierro JLG, Bonivardi AL (2002). Gallium-hydrogen bond formation on gallium and palladium-gallium silica-supported catalysts. J Catal, 211, 252Google Scholar
  30. 30.
    Iwasa N, Takezawa N (2003). New supported Pd and Pt alloy catalysts for steam reforming and dehydrogenation of methanol. Top Catal, 22, 215CrossRefGoogle Scholar
  31. 31.
    Jochum W, Penner S, Föttinger K, Kramer R, Rupprechter G, Klötzer B (2008). Hydrogen on polycrystalline b-Ga2O3: surface chemisorption, defect formation and reactivity. J Catal, 256, 268CrossRefGoogle Scholar
  32. 32.
    Umegaki T, Kuratani K, Yamada Y, Ueda A, Kuriyma N, Kobayashi T, et al. (2008). Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts. J Power Sources, 179, 566CrossRefGoogle Scholar
  33. 33.
    Lorenz H, Stöger-Pollach M, Schwarz S, Bernardi J, Pfaller K, Klötzer B, et al. (2008). Novel methanol steam reforming activity and selectivity of pure In2O3. Appl Catal A: Gen, 347, 34CrossRefGoogle Scholar
  34. 34.
    Hao Y, Meng G, Ye C, Zhang L. (2005). Controlled synthesis of In2O3 octahedrons and nanowires. Cryst Growth Des, 5, 1617CrossRefGoogle Scholar
  35. 35.
    Tatibouet JM (1997). Methanol oxidation as a catalyst surface probe. Appl Catal A: Gen, 148, 213CrossRefGoogle Scholar
  36. 36.
    Penner S, Wang D, Schlögl R, Hayek K (2005). Rh particles supported by thin vanadia films as model systems for catalysis: an electron microscopy study. Thin Solid Films, 484, 10CrossRefGoogle Scholar
  37. 37.
    Honma K, Yoshinaka M, Hirota K, Yamaguchi O, Asia J, Makiyama Y (1996). Fabrication, microstructure and electrical conductivity of V2O5 ceramics. Mater Res Bull, 31, 531CrossRefGoogle Scholar
  38. 38.
    Bäumer M, Freund H-J (1999). Metal deposits on well-ordered oxide films. Prog Surf Sci, 61, 127CrossRefGoogle Scholar
  39. 39.
    Heemeier M, Stempel S, Shaikhutdinov S, Libuda J, Bäumer M, Oldman RJ, et al. (2003). On the thermal stability of metal particles supported on a thin alumina film. Surf Sci, 523, 103CrossRefGoogle Scholar
  40. 40.
    Libuda J, Winkelmann F, Bäumer M, Freund H-J, Bertrams T, Neddermeyer H, et al. (1994). Structure and defects of an ordered alumina film on NiAl(110). Surf Sci, 318, 61CrossRefGoogle Scholar
  41. 41.
    Rupprechter G, Dellwig T, Unterhalt H, Freund H-J (2001). CO adsorption on Ni(100) and Pt(111) studied by infrared-visible sum frequency generation spectroscopy: design and application of an SFG-compatible UHV-high-pressure reaction cell. Top Catal, 15, 19CrossRefGoogle Scholar
  42. 42.
    Rupprechter G (2007). Sum frequency generation and polarization-modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv Catal, 51, 133CrossRefGoogle Scholar
  43. 43.
    Wachs IE (2005). Recent conceptual advances in the catalysis science of mixed metal oxide catalytic materials. Catal Today, 100, 79CrossRefGoogle Scholar
  44. 44.
    Starr DE, Mendes FMT, Middeke J, Blum R-P, Niehus H, Lahav D, et al. (2005). Preparation and characterization of well-ordered, thin niobia films on a metal substrate. Surf Sci, 599, 14CrossRefGoogle Scholar
  45. 45.
    Höbel F, Bandara A, Rupprechter G, Freund H-J (2006). Deactivation of Pd particles supported on Nb2O5/Cu3Au(100): SFG and TPD studies from UHV to 100 mbar. Surf Sci, 600, 963CrossRefGoogle Scholar
  46. 46.
    Iglesia E (1997). Design, synthesis, and use of cobalt-based Fischer–Tropsch synthesis catalysts. Appl Catal A, 161, 59CrossRefGoogle Scholar
  47. 47.
    Middeke J, Blum R-P, Hafemeister M, Niehus H (2005). Controlled preparation of well-ordered transition metal oxide layers on a metallic surface. Surf Sci, 587, 219CrossRefGoogle Scholar
  48. 48.
    Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000). Bridging the pressure and materials gaps: high pressure sum frequency generation study on supported Pd nanoparticles. Phys Rev Lett, 85, 776CrossRefGoogle Scholar
  49. 49.
    Shen YR (1994). Surfaces probed by nonlinear optics. Surf Sci, 299/300, 551CrossRefGoogle Scholar
  50. 50.
    Bandara A, Dobashi S, Kubota J, Onda K, Wada A, Domen K, et al. (1997). Adsorption of CO and NO on NiO(111)/Ni(111) surface studied by infrared-visible sum frequency generation spectroscopy. Surf Sci, 387, 312CrossRefGoogle Scholar
  51. 51.
    Rupprechter G (2007). A surface science approach to ambient pressure catalytic reactions. Catal Today, 126, 3CrossRefGoogle Scholar
  52. 52.
    Morkel M, Unterhalt H, Klüner T, Rupprechter G, Freund H-J (2005). Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces. Surf Sci, 586, 146CrossRefGoogle Scholar
  53. 53.
    Mendes, F. M. T, Uhl, A, Starr, D. E, Guimond, S, Schmal, M, Kuhlenbeck, H, et al. (2006). Strong metal support interaction on Co/niobia model catalysts. Catal Lett, 111, 35CrossRefGoogle Scholar
  54. 54.
    Surnev S, Ramsey MG, Netzer FP (2003). Vanadium oxide surface studies. Prog Surf Sci, 73, 117CrossRefGoogle Scholar
  55. 55.
    Schoiswohl J, Sock M, Chen Q, Thornton G, Kresse G, Ramsey MG, et al. (2007). Metal supported oxide nanostructures: model systems for advanced catalysis. Top Catal, 46, 137CrossRefGoogle Scholar
  56. 56.
    Magg N, Giorgi J, Frank M, Immaraprorn B, Schroeder T, Bäumer M, et al. (2004). Alumina-supported vanadium nanoparticles: structural characterization and CO adsorption properties. J Am Chem Soc, 126, 3616CrossRefGoogle Scholar
  57. 57.
    Demoulin O, Rupprechter G, Seunier I, Clef BL, Navez M, Ruiz P (2005). Investigation of parameters influencing the activation of a Pd/γ-alumina catalyst during methane combustion. J Phys Chem B, 109, 20454CrossRefGoogle Scholar
  58. 58.
    Rupprechter G, Weilach C (2008). Vibrational studies of surface-gas interactions at ambient pressure. J Phys: Condens Matter, 20, 184020CrossRefGoogle Scholar
  59. 59.
    Gabasch H, Hayek K, Klötzer B, Unterberger W, Kleimenov E, Teschner D, et al. (2007). Methane oxidation on Pd(111): in situ XPS identification of active phase. J Phys Chem C, 111, 7957CrossRefGoogle Scholar
  60. 60.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2005). Bistability and oscillations in CO oxidation studied with scanning tunnelling microscopy inside a reactor. Catal Today, 105, 234CrossRefGoogle Scholar
  61. 61.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, et al. (2005). Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett, 95, 255505CrossRefGoogle Scholar
  62. 62.
    Gustafson J, Westerström R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, et al. (2008). Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B, 78, 045423CrossRefGoogle Scholar
  63. 63.
    Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006). Surface oxides on close-packed surfaces of late transition metals. J Phys: Condens Matter, 18, 481CrossRefGoogle Scholar
  64. 64.
    Gabasch H, Unterberger W, Hayek K, Klötzer B, Kleimenov E, Teschner D, et al. (2006). In situ XPS study of Pd(111) oxidation at elevated pressure, Part 2: palladium oxidation in the 10–1 mbar range. Surf Sci, 600, 2980CrossRefGoogle Scholar
  65. 65.
    Ketteler G, Ogletree DF, Bluhm H, Liu H, Hebenstreit ELD, Salmeron M. (2005). In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc, 127, 18269CrossRefGoogle Scholar
  66. 66.
    Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, et al. (2007). Comparison of the reactivity of different Pd-O species in CO oxidation. Phys Chem Chem Phys, 9, 533CrossRefGoogle Scholar
  67. 67.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, et al. (2002). Two-dimensional oxide on Pd(111). Phys Rev Lett, 88, 246103CrossRefGoogle Scholar
  68. 68.
    Logan AD, Braunschweig EJ, Datye AK, Smith DJ (1989). The oxidation of small rhodium metal particles. Ultramicroscopy, 31, 132CrossRefGoogle Scholar
  69. 69.
    Bernal S, Botana FJ, Calvino JJ, Cifredo GA, Pérez-Omil JA, Pintado JM (1995). HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal Today, 23, 219CrossRefGoogle Scholar
  70. 70.
    Rupprechter G, Hayek K, Hofmeister H (1998). Electron microscopy of thin-film model catalysts: activation of alumina-supported rhodium nanoparticles. J Catal, 173, 409CrossRefGoogle Scholar
  71. 71.
    Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund H-J (2006). CO oxidation on partially oxidized Pd nanoparticles. J Catal, 242, 58CrossRefGoogle Scholar
  72. 72.
    Schalow T, Laurin M, Brandt B, Schauermann S, Guimond S, Kuhlenbeck H, et al. (2005). Oxygen storage at the metal/oxide interface of catalyst nanoparticles. Angew Chem Int Ed Engl, 44, 7601CrossRefGoogle Scholar
  73. 73.
    Ertl G (1994). Reactions at well-defined surfaces. Surf Sci, 299/300, 742CrossRefGoogle Scholar
  74. 74.
    Kim J, Bondarchuk O, Kay BD, White JM, Dohnálek Z (2007). Preparation and characterization of monodispersed WO3 nanoclusters on TiO2(110). Catal Today, 120, 186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Materials Chemistry, Vienna University of TechnologyViennaAustria
  2. 2.Institute of Physical Chemistry, University of InnsbruckInnsbruckAustria

Personalised recommendations