Skip to main content

Catalysis by Supported Size-Selected Clusters

  • Chapter
  • First Online:
Model Systems in Catalysis

Abstract

The use of size-selected metal clusters as model catalysts opens up many exciting new possibilities for the study of size-dependent catalysis. By supporting these size-selected clusters on planar thin-film or single-crystal metal oxide substrates, a variety of analysis techniques can be employed to examine them in detail in an effort to understand how and why these clusters exhibit unique reactivity. In this review, we focus on examples involving CO oxidation by gold clusters, NO reduction and the cycloisomerization of acetylene with Pd clusters, and hydrazine decomposition over Ir clusters. We conclude with some thoughts about in situ reaction probes and the potential of atom-by-atom design of bimetallic clusters with regard to size and composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bäumer M, Freund HJ (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127

    Article  Google Scholar 

  2. Goodman DW (1996) Correlations between surface science models and “real-world” catalysts. J Phys Chem 100:13090

    Article  CAS  Google Scholar 

  3. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:235

    Article  Google Scholar 

  4. Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf Sci Rep 27:1

    Article  CAS  Google Scholar 

  5. Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rosch N (2000) Size-effects in the acetylene cyclotrimerization on supported size-selected Pdn clusters (1 < = n< = 30). Surf Sci 454:984

    Article  Google Scholar 

  6. Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) When gold is not noble: Nanoscale gold catalysts. J Phys Chem A 103:9573

    Article  CAS  Google Scholar 

  7. Heiz U, Schneider WD (2000) Nanoassembled model catalysts. J Phys D Appl Phys 33:R85

    Article  CAS  Google Scholar 

  8. Heiz U, Schneider WD (2001) Size-selected clusters on solid surfaces. Crit Rev Solid State 26:251

    Article  CAS  Google Scholar 

  9. Heiz U, Bullock EL (2004) Fundamental aspects of catalysis on supported metal clusters. J Mater Chem 14:564

    Article  CAS  Google Scholar 

  10. Arenz M, Gilb S, Heiz U (2007) In: Woodruff D (ed) The chemical physics of solid surfaces, vol. 12, Elsevier, Amsterdam, ch 1

    Google Scholar 

  11. Vajda S, Winans RE, Elam JW, Lee BD, Pellin MJ, Seifert S, Tikhonov GY, Tomczyk NA (2006) Supported gold clusters and cluster-based nanomaterials: characterization, stability and growth studies by in situ GISAXS under vacuum conditions and in the presence of hydrogen. Top Catal 39:161

    Article  CAS  Google Scholar 

  12. Baker SH, Thornton SC, Keen AM, Preston TI, Norris C, Edmonds KW, Binns C (1997) The construction of a gas aggregation source for the preparation of mass-selected ultrasmall metal particles. Rev Sci Instrum 68:1853

    Article  CAS  Google Scholar 

  13. Baker SH, Thornton SC, Edmonds KW, Maher MJ, Norris C, Binns C (2000) The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters. Rev Sci Instrum 71:3178

    Article  CAS  Google Scholar 

  14. Heiz U, Vayloyan A, Schumacher E (1997) A new cluster source for the generation of binary metal clusters. Rev Sci Instrum 68:3718

    Article  CAS  Google Scholar 

  15. Kemper P, Kolmakov A, Tong X, Lilach Y, Benz L, Manard M, Metiu H, Buratto SK, Bowers MT (2006) Formation, deposition and examination of size selected metal clusters on semiconductor surfaces: An experimental setup. Inter J Mass Spec 254:202

    Article  CAS  Google Scholar 

  16. Goldby IM, vonIssendorff B, Kuipers L, Palmer RE (1997) Gas condensation source for production and deposition of size-selected metal clusters. Rev Sci Instrum 68:3327

    Article  CAS  Google Scholar 

  17. von Issendorff B, Palmer RE (1999) A new high transmission infinite range mass selector for cluster and nanoparticle beams. Rev Sci Instrum 70:4497

    Article  Google Scholar 

  18. Boyd KJ, Lapicki A, Aizawa M, Anderson SL (1998) A phase-space-compressing, mass-selecting beamline for hyperthermal, focused ion beam deposition. Rev Sci Instrum 69:4106

    Article  CAS  Google Scholar 

  19. Vandoni G, Felix C, Goyhenex C, Monot R, Buttet J, Harbich W (1995) The fate of mass-selected silver clusters deposited on Pd(100). Surf Sci 333:838

    Article  Google Scholar 

  20. Harbich W (1999) “Soft landing” of size-selected clusters in chemically inert substrates. Phil Mag B 79:1307

    Article  CAS  Google Scholar 

  21. Lau JT, Wurth W, Ehrke HU, Achleitner A (2003) Soft landing of size-selected clusters in rare gas matrices. Low Temp Phys 29:223

    Article  CAS  Google Scholar 

  22. Bromann K, Brune H, Felix C, Harbich W, Monot R, Buttet J, Kern K (1997) Hard and soft landing of mass selected Ag clusters on Pt(111). Surf Sci 377:1051–1055

    Article  Google Scholar 

  23. Messerli S, Schintke S, Morgenstern K, Sanchez A, Heiz U, Schneider WD (2000) Imaging size-selected silicon clusters with a low-temperature scanning tunneling microscope. Surf Sci 465:331

    Article  CAS  Google Scholar 

  24. Tong X, Benz L, Chrétien S, Kemper P, Kolmakov A, Metiu H, Bowers MT, Buratto SK (2005) Pinning mass-selected Ag n clusters on the TiO2(110)-1 × 1 surface via deposition at high kinetic energy. J Chem Phys 123:204701

    Article  Google Scholar 

  25. Tong X, Benz L, Kemper P, Metiu H, Bowers MT, Buratto SK (2005) Intact size-selected Au n clusters on a TiO2(110)-(1 × 1) surface at room temperature. J Am Chem Soc 127:13516

    Article  CAS  Google Scholar 

  26. Benz L, Tong X, Kemper P, Lilach Y, Kolmakov A, Metiu H, Bowers MT, Buratto SK (2005) Landing of size-selected Ag n + clusters on single crystal TiO2 (110)-(1 × 1) surfaces at room temperature. J Chem Phys 122:081102

    Article  Google Scholar 

  27. Tong X, Benz L, Kolmakov A, Chrétien S, Metiu H, Buratto SK (2005) The nucleation sites of Ag clusters grown by vapor deposition on a TiO2(110)-1 × 1 surface. Surf Sci 575:60

    Article  CAS  Google Scholar 

  28. Benz L, Tong X, Kemper P, Metiu H, Bowers MT, Buratto SK (2006) Pinning mononuclear Au on the surface of titania. J Phys Chem B 110:663

    Article  CAS  Google Scholar 

  29. Buratto SK, Bowers MT, Metiu H, Manard M, Tong X, Benz L, Kemper P, Chrétien S (2007) In: Woodruff D (ed) The chemical physics of solid surfaces, vol. 12, Elsevier, Amsterdam, ch 4

    Google Scholar 

  30. Gilb S, Weis P, Furche F, Ahlrichs R, Kappes MM (2002) Structures of small gold cluster cations (Aun + , n < 14): Ion mobility measurements versus density functional calculations. J Chem Phys 116:4094

    Article  CAS  Google Scholar 

  31. Fernandez EM, Soler JM, Garzon IL, Balbas LC (2004) Trends in the structure and bonding of noble metal clusters. Phys Rev B 70:165403

    Article  Google Scholar 

  32. Olson RM, Varganov S, Gordon MS, Metiu H, Chrétien S, Piecuch P, Kowalski K, Kucharski SA, Musial M (2005) Where does the planar-to-nonplanar turnover occur in small gold clusters? J Am Chem Soc 127:1049

    Article  CAS  Google Scholar 

  33. Lee S, Fan CY, Wu TP, Anderson SL (2005) Agglomeration, sputtering, and carbon monoxide adsorption behavior for Au/Al2O3 prepared by Au n + deposition on Al2O3/NiAl(110). J Phys Chem B 109:11340

    Article  CAS  Google Scholar 

  34. Lee S, Fan CY, Wu TP, Anderson SL (2005) Agglomeration, support effects, and CO adsorption on Au/TiO2(110) prepared by ion beam deposition. Surf Sci 578:5

    Article  CAS  Google Scholar 

  35. Wu TP, Kaden WE, Anderson SL (2008) Water on rutile TiO2(110) and Au/TiO2(110): Effects on an mobility and the isotope exchange reaction. J Phys Chem C 112:9006

    Article  CAS  Google Scholar 

  36. Heiz U, Sherwood R, Cox DM, Kaldor A, Yates JT (1995) CO Chemisorption on monodispersed platinum clusters on SiO2 – detection of CO chemisorption on single platinum atoms. J Phys Chem 99:8730

    Article  CAS  Google Scholar 

  37. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153

    Article  CAS  Google Scholar 

  38. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6:102

    Article  CAS  Google Scholar 

  39. Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427

    Article  CAS  Google Scholar 

  40. Haruta A (2003) When gold is not noble: Catalysis by nanoparticles. Chem Rec 3:75

    Article  CAS  Google Scholar 

  41. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev Sci Eng 41:319

    Article  CAS  Google Scholar 

  42. Bond GC, Thompson DT (2000) Gold-catalysed oxidation of carbon monoxide. Gold Bull 33:41

    CAS  Google Scholar 

  43. Meyer R, Lemire C, Shaikhutdinov S, Freund HJ (2004) The surface chemistry of catalysis by gold. Gold Bull 37:72

    CAS  Google Scholar 

  44. Hayashi T, Tanaka K, Haruta M (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566

    Article  CAS  Google Scholar 

  45. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115:301

    Article  CAS  Google Scholar 

  46. Bamwenda GR, Tsubota S, Nakamura T, Haruta M (1997) The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal Let 44:83

    Article  CAS  Google Scholar 

  47. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647

    Article  CAS  Google Scholar 

  48. Heiz U, Sanchez A, Abbet S, Schneider WD (1999) The reactivity of gold and platinum metals in their cluster phase. Eur Phys J D 9:35

    Article  CAS  Google Scholar 

  49. Socaciu LD, Hagen J, Bernhardt TM, Woste L, Heiz U, Hakkinen H, Landman U (2003) Catalytic CO oxidation by free Au 2 : Experiment and theory. J Am Chem Soc 125:10437

    Article  CAS  Google Scholar 

  50. Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403

    Article  CAS  Google Scholar 

  51. Hakkinen H, Abbet W, Sanchez A, Heiz U, Landman U (2003) Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew Chem Int Edit 42:1297

    Article  CAS  Google Scholar 

  52. Lee SS, Fan CY, Wu TP, Anderson SL (2004) CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J Am Chem Soc 126:5682

    Article  CAS  Google Scholar 

  53. Lee S, Fan CY, Wu TP, Anderson SL (2005) Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Aun/TiO2 catalysts. J Chem Phys 123:124710

    Article  Google Scholar 

  54. Heiz U, Sanchez A, Abbet S, Schneider WD (1999) Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts. J Am Chem Soc 121:3214

    Article  CAS  Google Scholar 

  55. Abbet S, Heiz U, Hakkinen H, Landman U (2001) CO oxidation on a single Pd atom supported on magnesia. Phys Rev Lett 86:5950

    Article  CAS  Google Scholar 

  56. Rottgen MA, Abbet S, Judai K, Antonietti JM, Worz AS, Arenz M, Henry CR, Heiz U (2007) Cluster chemistry: Size-dependent reactivity induced by reverse spill-over. J Am Chem Soc 129:9635

    Article  Google Scholar 

  57. Engel T, Ertl G (1978) Molecular-beam investigation of catalytic-oxidation of CO on Pd (111). J Chem Phys 69:1267

    Article  CAS  Google Scholar 

  58. Henry CR, Chapon C, Duriez C (1991) Precursor state in the chemisorption of CO on supported palladium clusters. J Chem Phys 95:700

    Article  CAS  Google Scholar 

  59. Harding CJ, Kunz S, Habibpour V, Teslenko V, Arenz M, Heiz U (2008) Dual pulsed-beam controlled mole fraction studies of the catalytic oxidation of CO on supported Pd nanocatalysts. J Catal 255:234

    Article  CAS  Google Scholar 

  60. Judai K, Abbet S, Worz AS, Ferrari AM, Giordano L, Pacchioni G, Heiz U (2003) Acetylene polymerization on supported transition metal clusters. J Mol Catal A 199:103

    Article  CAS  Google Scholar 

  61. Rucker TG, Logan MA, Gentle TM, Muetterties EL, Somorjai GA (1986) Conversion of acetylene to benzene over palladium single-crystal surfaces. 1. The low-pressure stoichiometric and the high-pressure catalytic reactions. J Phys Chem 90:2703

    Article  CAS  Google Scholar 

  62. Ormerod RM, Lambert RM (1990) Heterogeneously catalyzed cyclotrimerization of ethyne to benzene over supported palladium catalysts. Chem Commun 20:1421

    Google Scholar 

  63. Abbet S, Sanchez A, Heiz U, Schneider WD, Ferrari AM, Pacchioni G, Rosch N (2000) Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 < = n < = 30): one atom is enough!. J Am Chem Soc 122:3453

    Article  CAS  Google Scholar 

  64. Tysoe WT, Nyberg GL, Lambert RM (1986) Selective hydrogenation of acetylene over palladium in ultra high-vacuum. J Phys Chem 90:3188

    Article  CAS  Google Scholar 

  65. Ferrari AM, Giordano L, Rosch N, Heiz U, Abbet S, Sanchez A, Pacchioni G (2000) Role of surface defects in the activation of supported metals: A quantum-chemical study of acetylene cyclotrimerization on Pd1/MgO. J Phys Chem B 104:10612

    Article  CAS  Google Scholar 

  66. Abbet S, Sanchez A, Heiz U, Schneider WD (2001) Tuning the selectivity of acetylene polymerization atom by atom. J Catal 198:122

    Article  CAS  Google Scholar 

  67. Judai K, Worz AS, Abbet S, Antonietti JM, Heiz U, Del Vitto A, Giordano L, Pacchioni G (2005) Acetylene trimerization on Ag, Pd and Rh atoms deposited on MgO thin films. Phys Chem Chem Phys 7:955

    Article  CAS  Google Scholar 

  68. Sterrer M, Risse T, Pozzoni UM, Giordano L, Heyde M, Rust HP, Pacchioni G, Freund HJ (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98:096107

    Article  Google Scholar 

  69. Pacchioni G, Giordano L, Baistrocchi M (2005) Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys Rev Lett 94:226105

    Article  Google Scholar 

  70. Zhang C, Yoon B, Landman U (2007) Predicted oxidation of CO catalyzed by au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J Am Chem Soc 129:2228

    Article  CAS  Google Scholar 

  71. Worz AS, Judai K, Abbet S, Antonietti JM, Heiz U, Del Vitto A, Giordano L, Pacchioni G (2004) Chemistry on single atoms: Key factors for the acetylene trimerization on MgO-supported Rh, Pd, and Ag atoms. Chem Phys Lett 399:266

    Article  Google Scholar 

  72. Worz AS, Judai K, Abbet S, Heiz U (2003) Cluster size-dependent mechanisms of the CO + NO reaction on small Pdn (n < = 30) clusters on oxide surfaces. J Am Chem Soc 125:7964

    Article  Google Scholar 

  73. Judai K, Abbet S, Worz AS, Heiz U, Henry CR (2004) Low-temperature cluster catalysis. J Am Chem Soc 126:2732

    Article  CAS  Google Scholar 

  74. Rainer DR, Vesecky SM, Koranne M, Oh WS, Goodman DW (1997) The CO + NO reaction over Pd: A combined study using single-crystal, planar-model-supported, and high-surface-area Pd/Al2O3 catalysts. J Catal 167:234

    Article  CAS  Google Scholar 

  75. Piccolo L, Henry CR (2000) Reactivity of metal nanoclusters: nitric oxide adsorption and CO plus NO reaction on Pd/MgO model catalysts. Appl Surf Sci 162:670

    Article  Google Scholar 

  76. Lee S, Fan CY, Wu TP, Anderson SL (2005) Hydrazine decomposition over Ir n /Al2O3 model catalysts prepared by size-selected cluster deposition. J Phys Chem B 109:381

    Article  CAS  Google Scholar 

  77. Fan CY, Wu TP, Kaden WE, Anderson SL (2006) Cluster size effects on hydrazine decomposition on Ir n /Al2O3/NiAl(110). Surf Sci 600:461

    Article  CAS  Google Scholar 

  78. Buffat P, Borel JP (1976) Size effect on melting temperature of gold particles. Phys Rev A 13:2287

    Article  CAS  Google Scholar 

  79. Koper O, Winecki S (2001) In: Klabunde KJ (ed) Nanoscale materials in chemistry, John Wiley and Sons Inc., New York, ch 8

    Google Scholar 

  80. Becker C, von Bergmann K, Rosenhahn A, Schneider J, Wandelt K (2001) Preferential cluster nucleation on long-range superstructures on Al2O3/Ni3Al(111). Surf Sci 486:L443

    Article  CAS  Google Scholar 

  81. Lee B, Seifert S, Riley SJ, Tikhonov G, Tomczyk NA, Vajda S, Winans RE (2005) Anomalous grazing incidence small-angle X-ray scattering studies of platinum nanoparticles formed by cluster deposition. J Chem Phys 123:074701

    Article  Google Scholar 

  82. Vajda S, Winans RE, Elam JW, Lee B, Pellin MJ, Riley SJ, Seifert S, Tikhonov GY, Tomczyk NA (2005) In situ GISAXS studies of the thermal stability and temperature induced growth of supported cluster-based platinum and gold nanoparticles. Am Chem Soc Div Fuel Chem 50:190

    CAS  Google Scholar 

  83. Xiong G, Elam JW, Feng H, Han CY, Wang HH, Iton LE, Curtiss LA, Pellin MJ, Kung M, Kung H, Stair PC (2005) Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes. J Phys Chem B 109:14059

    Article  CAS  Google Scholar 

  84. Vajda S, Ballentine GE, Mucherie S, Marshall CL, Elam JW, Pellin MJ, Lee B, Lo CT, Seifert S, Winans RE, Calo JM (2007) Highly selective oxidation reactions: Oxidative dehydrogenation of propane (ODHP) by size-selected platinum catalysts and oxidation of alkenes on size-selected silver and gold clusters and nanoparticles. Am Chem Soc Div Petrol Chem 52

    Google Scholar 

  85. Sinfelt JH (1985) Bimetallic catalysts. Sci Am 253:90

    Article  Google Scholar 

  86. Taylor TG, Willey KF, Bishop MB, Duncan MA (1990) Photodissociation of mass-selected Bi/Cr and Bi/Fe bimetallic clusters. J Phys Chem 94:8016

    Article  CAS  Google Scholar 

  87. Koretsky GM, Kerns KP, Nieman GC, Knickelbein MB, Riley SJ (1999) Reactivity and photoionization studies of bimetallic cobalt-manganese clusters. J Phys Chem A 103:1997

    Article  CAS  Google Scholar 

  88. Parks EK, Kerns MP, Riley SJ (2000) The structure of nickel-iron clusters probed by adsorption of molecular nitrogen. Chem Phys 262:151

    Article  CAS  Google Scholar 

  89. Koyasu K, Mitsui M, Nakajima A, Kaya K (2002) Photoelectron spectroscopy of palladium-doped gold cluster anions; AunPd (n = 1–4). Chem Phys Lett 358:224

    Article  CAS  Google Scholar 

  90. Pramann A, Koyasu K, Nakajima A, Kaya K (2003) Band gap shiftings in Co-doped Nbn (n = 3–15) clusters: Influence of Co 3d electrons on the electronic structure. Int J Mass Spec 229:77

    Article  CAS  Google Scholar 

  91. Rexer EF, Jellinek J, Krissinel EB, Parks EK, Riley SJ (2002) Theoretical and experimental studies of the structures of 12-, 13-, and 14-atom bimetallic nickel/aluminum clusters. J Chem Phys 117:82

    Article  CAS  Google Scholar 

  92. Giorgio S, Henry CR (2002) Core-shell bimetallic particles, prepared by sequential impregnations. Eur Phys J Appl Phys 20:23

    Article  CAS  Google Scholar 

  93. Heemeier M, Carlsson AF, Naschitzki M, Schmal M, Baumer M, Freund HJ (2002) Preparation and characterization of a model bimetallic catalyst: Co–Pd nanoparticles supported on Al2O3. Angew Chem Int Ed 41:4073

    Article  CAS  Google Scholar 

  94. Santra AK, Yang F, Goodman DW (2004) The growth of Ag–Au bimetallic nanoparticles on TiO2(110). Surf Sci 548:324

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Meyer, R., Lei, Y., Lee, S., Vajda, S. (2010). Catalysis by Supported Size-Selected Clusters. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_16

Download citation

Publish with us

Policies and ethics