Catalysis by Noble Metal Nanoparticles Supported on Thin-Oxide Films

  • Günther Rupprechter


Noble metal single crystals have served as successful model systems for heterogeneous catalysts. However, it was soon realized that even stepped single crystals may not fully represent the catalytic properties of oxide-supported metal nanoparticles. A number of planar nanoparticle model catalysts have thus been developed and thoroughly characterized with respect to particle nucleation and growth, particle surface structure and composition, adsorption properties, and catalytic activity. A critical issue was to prepare well-defined crystalline thin-oxide films that could be used as model supports. The methods involved include STM, AFM, TEM, LEED, AES, XPS, TPD, IRAS, molecular beams, and microreactor kinetics. Following extensive studies under ultrahigh vacuum, a growing interest was recently directed toward exposing nanoparticle model catalysts to ambient pressure, utilizing UHV-high-pressure cells. A logical further step was to employ in situ techniques, e.g., SFG and PM-IRAS vibrational spectroscopy, to elucidate structure-function relationships under realistic conditions. Comparison with single-crystal results revealed the specific properties of supported nanoparticles.


Methanol Oxidation Model Catalyst Hollow Site Model Catalysis Threefold Hollow Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author is very grateful to those who contributed to the case studies discussed, in particular to A. Bandara, M. Borasio, T. Dellwig, P. Galletto, H. Hofmeister, F. Höbel, L. Hu, B. Kell, M. Morkel, O. Rodriguez de la Fuente, J. Silvestre-Albero, H. Unterhalt, and, specifically H.-J. Freund. Collaborations with V.I. Bukhtiyarov, B. Klötzer, R. Schlögl, J.J. Calvino, J.-A. Perez-Omil, and G.A. Somorjai are gratefully acknowledged. The STM images in Figure 15.7 are courtesy of M. Heemeier, M. Bäumer, H.-J. Freund, E. Napetschnig, M. Schmid, and P. Varga.


  1. 1.
    Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. VCH-Verlag, WeinheimCrossRefGoogle Scholar
  2. 2.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley & Sons, Inc., New YorkGoogle Scholar
  3. 3.
    Chorkendorff I, Niemantsverdriet JW (2003) Concepts of modern catalysis and kinetics. Wiley, WeinheimCrossRefGoogle Scholar
  4. 4.
    Rupprechter G, Weilach C (2007) Mind the gap! Spectroscopy of catalytically active phases. Nano Today 2:20CrossRefGoogle Scholar
  5. 5.
    Goodman DW (1995) Model studies in catalysis using surface science probes. Chem Rev 95:523CrossRefGoogle Scholar
  6. 6.
    Somorjai GA, Rupprechter G (1998) The flexible surface: Molecular studies explain the extraordinary diversity of surface chemical properties. J Chem Edu 75:161CrossRefGoogle Scholar
  7. 7.
    Ertl G (1994) Reactions at well-defined surfaces. Surf Sci 299/300:742CrossRefGoogle Scholar
  8. 8.
    Hayek K, Fuchs M, Klötzer B, Reichl W, Rupprechter G (2000) Studies of metal-support interactions with “real” and “inverted” model systems: Reactions of CO and small hydrocarbons with hydrogen on noble metals in contact with oxides. Topics Catal 13:55CrossRefGoogle Scholar
  9. 9.
    Davis SM, Zaera F, Somorjai GA (1982) Surface structure and temperature dependence of light-alkane skeletal rearrangement reactions catalyzed over platinum single-crystal surfaces. J Am Chem Soc 104:7453CrossRefGoogle Scholar
  10. 10.
    Zhdanov VP, Kasemo B (1997) Kinetics of rapid heterogeneous reactions on the nanometer scale. J Catal 170:377CrossRefGoogle Scholar
  11. 11.
    Freund H-J, Bäumer M, Kuhlenbeck H (2000) Catalysis and surface science: What do we learn from studies of oxide-supported cluster model systems? Adv Catal 45:333CrossRefGoogle Scholar
  12. 12.
    Morkel M, Rupprechter G, Freund H-J (2005) Finite size effects on supported Pd nanoparticles: Interaction of hydrogen with CO and C2H4. Surf Sci Lett 588:L209CrossRefGoogle Scholar
  13. 13.
    Rupprechter G, Weilach C (2008) Vibrational studies of surface-gas interactions at ambient pressure. J Phys Condens Matter 20:184020CrossRefGoogle Scholar
  14. 14.
    Schmidt LD, Krause KR (1992) Correlation between microstructure and hydrogenolysis activity and selectivity of noble metal catalyst particles. Catal Today 12:1035CrossRefGoogle Scholar
  15. 15.
    Henry CR, Chapon C, Duriez C, Giorgio S (1991) Growth and morphology of palladium particles epitaxially deposited on a MgO(100) surface. Surf Sci 253:177CrossRefGoogle Scholar
  16. 16.
    Datye AK, Smith DJ (1992) Characterization of heterogeneous catalysts by high resolution electron microscopy. Catal Rev Sci Eng 34:129CrossRefGoogle Scholar
  17. 17.
    Rupprechter G, Seeber G, Hayek K, Hofmeister H (1994) Epitaxial noble metal particles upon oxidation and reduction. A model system for supported metal catalysts. Phys Stat Sol (a) 146:449CrossRefGoogle Scholar
  18. 18.
    Rupprechter G, Hayek K, Rendón L, José-Yacamán M (1995) Epitaxially grown model catalyst particles of platinum, rhodium, iridium, palladium and rhenium studied by electron microscopy. Thin Solid Films 260:148CrossRefGoogle Scholar
  19. 19.
    Bernal S, Botana FJ, Calvino JJ, Pérez-Omil JA (1995) HREM study of the behaviour of a Rh/CeO2 catalyst under high temperature reducing and oxidizing conditions. Catal Today 23:219CrossRefGoogle Scholar
  20. 20.
    Rupprechter G, Hayek K, Hofmeister H (1998) Electron microscopy of thin film model catalysts: Activation of alumina supported rhodium nanoparticles. J Catal 173:409CrossRefGoogle Scholar
  21. 21.
    Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31:235CrossRefGoogle Scholar
  22. 22.
    Hayek K, Kramer R, Paal Z (1997) Metal-support boundary sites in catalysis. Appl Catal A 162:1CrossRefGoogle Scholar
  23. 23.
    Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006) Surface oxides on close-packed surfaces of late transition metals. J Phys Condens Matter 18:481CrossRefGoogle Scholar
  24. 24.
    Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayek K, Klötzer B (2007) Comparison of the reactivity of different Pd-O species in CO oxidation. Phys Chem Chem Phys 9:533CrossRefGoogle Scholar
  25. 25.
    Ceyer ST (2001) The unique chemistry of hydrogen beneath the surface: Catalytic hydrogenation of hydrocarbons. Acc Chem Res 34:737CrossRefGoogle Scholar
  26. 26.
    Rupprechter G, Morkel M, Freund H-J, Hirschl R (2004) Sum frequency generation and density functional studies of CO–H interaction and hydrogen bulk dissolution on Pd(111). Surf Sci 554:43CrossRefGoogle Scholar
  27. 27.
    Borasio M, Rodríguez de la Fuente O, Rupprechter G, Freund H-J (2005) In situ studies of methanol decomposition and oxidation on Pd(111) by PM-IRAS and XPS spectroscopy. J Phys Chem B Lett 109:17791Google Scholar
  28. 28.
    Gabasch H, Hayek K, Klötzer B, Knop-Gericke A, Schlögl R (2006) Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. J Phys Chem B 110:4947CrossRefGoogle Scholar
  29. 29.
    Teschner D, Vass E, Hävecker M, Zafeiratos S, Schnörch P, Sauer H, Knop-Gericke A, Schlögl R, Chamam M, Wootsch A, Canning AS, Gamman JJ, Jackson SD, McGregor J, Gladden LF (2006) Alkyne hydrogenation over Pd catalysts: A new paradigm. J Catal 242:26CrossRefGoogle Scholar
  30. 30.
    Saint-Lager MC, Jugnet Y, Dolle P, Piccolo L, Baudoing-Savois R, Bertolini JC, Bailly A, Robach O, Walker C, Ferrer S (2005) Pd8Ni92(1 1 0) surface structure from surface X-ray diffraction. Surface evolution under hydrogen and butadiene reactants at elevated pressure. Surf Sci 587:229CrossRefGoogle Scholar
  31. 31.
    Rupprechter G., Freund H.-J. (2001) Adsorbate-induced restructuring and pressure-dependent adsorption on metal nanoparticles studied by electron microscopy and sum frequency generation spectroscopy. Topics Catal 14:3CrossRefGoogle Scholar
  32. 32.
    Burkhardt J, Schmidt LD (1989) Comparison of microstructures in oxidation and reduction: Rh and Ir particles on SiO2 and Al2O3. J Catal 116:240CrossRefGoogle Scholar
  33. 33.
    Logan AD, Sharoudi KS, Datye AK (1991) Oxidative restructuring of rhodium metal surfaces: Correlations between single crystals and small metal particles. J Phys Chem 95:5568CrossRefGoogle Scholar
  34. 34.
    Rupprechter G, Hayek K, Hofmeister H (1995) Microstructural study of epitaxially grown rhodium model catalyst particles. Vacuum 46:1035CrossRefGoogle Scholar
  35. 35.
    Logan AD, Braunschweig EJ, Datye AK, Smith DJ (1989) The oxidation of small rhodium metal particles. Ultramicroscopy 31:132CrossRefGoogle Scholar
  36. 36.
    Rupprechter G, Seeber G, Goller H, Hayek K (1999) Structure-activity correlations on Rh/Al2O3 and Rh/TiO2 thin film model catalysts after oxidation and reduction. J Catal 186:201CrossRefGoogle Scholar
  37. 37.
    Haerudin H, Bertel S, Kramer R (1998) Surface stoichiometry of titanium suboxide. part I:volumetric and FTIR study. J Chem Soc Faraday Trans 94:1481CrossRefGoogle Scholar
  38. 38.
    Gai PL, Boyes ED, Helveg S, Hansen PL, Giorgio S, Henry CR (2007) Atomic-resolution environmental transmission electron microscopy for probing gas–solid reactions in heterogeneous catalysis. MRS Bull 32:1Google Scholar
  39. 39.
    Bäumer M, Freund H-J (1999) Metal deposits on well-ordered oxide films. Prog Surf Sci 61:127CrossRefGoogle Scholar
  40. 40.
    Campbell CT (1997) Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf Sci Rep 27:1CrossRefGoogle Scholar
  41. 41.
    Goodman D (2003) Model catalysts: From imagining to imaging a working surface. J Catal 216:213CrossRefGoogle Scholar
  42. 42.
    Kuhlenbeck H, Freund H-J (2006) In: Bonzel HP (ed) Landolt-Börnstein: Physics of covered solid surfaces, III-42. Springer, New York, p 332Google Scholar
  43. 43.
    Freund H-J, Bäumer M, Libuda J, Risse T, Rupprechter G, Shaikhutdinov S (2003) Preparation and characterization of model catalysts: From ultrahigh vacuum to in-situ conditions at the atomic dimension. J Catal 216:223CrossRefGoogle Scholar
  44. 44.
    Kulawik M, Nilius N, Rust H-P, Freund H-J (2003) Atomic structure of antiphase domain boundaries of a thin Al2O3 film on NiAl(110). Phys Rev Lett 91:256101CrossRefGoogle Scholar
  45. 45.
    Schmid M, Shishkin M, Kresse G, Napetschnig E, Varga P, Kulawik M, Nilius N, Rust H-P, Freund H-J (2006) Oxygen-deficient line defects in an ultrathin aluminium oxide film. Phys Rev Lett 97:046101CrossRefGoogle Scholar
  46. 46.
    Frank M, Bäumer M (2000) From atoms to crystallites: Adsorption on oxide-supported metal particles. Phys Chem Chem Phys 2:3723CrossRefGoogle Scholar
  47. 47.
    Heemeier M, Stempel S, Shaikhutdinov S, Libuda J, Bäumer M, Oldman RJ, Jackson SD, Freund H-J (2003) On the thermal stability of metal particles supported on a thin alumina film. Surf Sci 523:103CrossRefGoogle Scholar
  48. 48.
    Napetschnig E, Schmid M, Varga P (2007) Pd, Co and Co–Pd clusters on the ordered alumina film on NiAl(110): Contact angle, surface structure and composition. Surf Sci 601:3233CrossRefGoogle Scholar
  49. 49.
    Højrup Hansen K, Worren T, Stempel S, Lægsgaard E, Bäumer M, Freund H-J, Besenbacher F, Stensgaard I (1999) Palladium nanocrystals on Al2O3: Structure and Adhesion energy. Phys Rev Lett 83:4120CrossRefGoogle Scholar
  50. 50.
    Rupprechter G (2007) “A Surface Science Approach to Ambient Pressure Catalytic Reactions”. Catal Today 126:3CrossRefGoogle Scholar
  51. 51.
    Rupprechter G (2007) Sum frequency generation and polarization-modulation infrared reflection absorption spectroscopy of functioning model catalysts from ultrahigh vacuum to ambient pressure. Adv Catal 51:133CrossRefGoogle Scholar
  52. 52.
    Libuda J, Freund H-J (2005) Molecular beam experiments on model catalysts. Surf Sci Rep 57:157CrossRefGoogle Scholar
  53. 53.
    Doyle A, Shaikhutdinov S, Freund H-J (2004) Alkene chemistry on palladium surface: Nanoparticles vs. single crystals. J Catal 223:444CrossRefGoogle Scholar
  54. 54.
    Rupprechter G (2001) Surface vibrational spectroscopy from ultrahigh vacuum to atmospheric pressure: Adsorption and reactions on single crystals and nanoparticle model catalysts monitored by sum frequency generation spectroscopy. Phys Chem Chem Phys 3:4621CrossRefGoogle Scholar
  55. 55.
    Rupprechter G, Unterhalt H, Morkel M, Galletto P, Hu L, Freund H-J (2002) SFG vibrational spectroscopy at solid–gas interfaces: CO adsorption on Pd model catalysts at ambient pressure. Surf Sci 502–503:109CrossRefGoogle Scholar
  56. 56.
    Silvestre-Albero J, Rupprechter G, Freund H-J (2006) From Pd nanoparticles to single crystals: 1,3-butadiene hydrogenation on well-defined model catalysts. Chem Commun 80Google Scholar
  57. 57.
    Silvestre-Albero J, Rupprechter G, Freund H-J (2006) Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts: Effect of Pd particle size. J Catal 240:58CrossRefGoogle Scholar
  58. 58.
    Arnold H, Döbert F, Gaube J (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis, VCH-Verlag, Weinheim p 2165Google Scholar
  59. 59.
    Knözinger H, Gates BC (eds) (2006–2008) Advances in Catalysis, vol. 50–52Google Scholar
  60. 60.
    Somorjai GA, Rupprechter G (1999) Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy. J Phys Chem B 103:1623CrossRefGoogle Scholar
  61. 61.
    Dellwig T, Rupprechter G, Unterhalt H, Freund H-J (2000) Bridging the pressure and materials gaps: High pressure sum frequency generation study on supported Pd nanoparticles. Phys Rev Lett 85:776CrossRefGoogle Scholar
  62. 62.
    Rupprechter G, Kaichev VV, Unterhalt H, Morkel M, Bukhtiyarov VI (2004) CO dissociation and CO hydrogenation on smooth and ion-bombarded Pd(111): SFG and XPS spectroscopy at mbar pressures. Appl Surf Sci 235:26CrossRefGoogle Scholar
  63. 63.
    Kaichev VV, Prosvirin IP, Bukhtiyarov VI, Unterhalt H, Rupprechter G, Freund H-J (2003) High-pressure studies of CO adsorption on Pd(111) by X-ray photoelectron spectroscopy (XPS) and sum-frequency generation (SFG). J Phys Chem B 107:3522CrossRefGoogle Scholar
  64. 64.
    Gusovius AF, Watling TC, Prins R (1999) Ca promoted Pd/SiO2 catalysts for the synthesis of methanol from CO: The location of the promoter. Appl Catal A 188:187CrossRefGoogle Scholar
  65. 65.
    Unterhalt H, Rupprechter G, Freund H-J (2002) Vibrational sum frequency spectroscopy on Pd(111) and supported Pd nanoparticles: CO adsorption from ultrahigh vacuum to atmospheric pressure. J Phys Chem B 106:356CrossRefGoogle Scholar
  66. 66.
    Stacchiola D, Thompson A, Kaltchev G, Tysoe WT (2002) Photoelastic modulation-reflection absorption infrared spectroscopy of CO on Pd(111). J Vac Sci Technol A 20:2101CrossRefGoogle Scholar
  67. 67.
    Ozensoy E, Meier D, Goodman D (2002) Polarization modulation infrared reflection absorption spectroscopy at elevated pressures: CO adsorption on Pd(111) at atmospheric pressures. J Phys Chem B 106:9367CrossRefGoogle Scholar
  68. 68.
    Rodríguez de la Fuente O, Borasio M, Rupprechter G, Freund H-J (2004) The influence of surface defects on methanol decomposition on Pd(111) studied by XPS and PM-IRAS. Surf Sci 566–568:740Google Scholar
  69. 69.
    Wolter K, Seiferth O, Kuhlenbeck H, Bäumer M, Freund H-J (1998) Infrared spectroscopic investigation of CO adsorbed on Pd aggregates deposited on an alumina model support. Surf Sci 399:190CrossRefGoogle Scholar
  70. 70.
    Yudanov IV, Sahnoun R, Neyman KM, Rösch N, Hoffmann J, Schauermann S, Johánek V, Unterhalt H, Rupprechter G, Libuda L, Freund H-J (2003) CO adsorption on Pd nanoparticles: Density functional and vibrational spectroscopy studies. J Phys Chem B 107:255CrossRefGoogle Scholar
  71. 71.
    Hoffmann FM (1983) Infrared reflection–absorption spectroscopy of adsorbed molecules. Surf Sci Rep 3:103CrossRefGoogle Scholar
  72. 72.
    Morkel M, Unterhalt H, Klüner T, Rupprechter G, Freund H-J (2005) Interpreting intensities in vibrational sum frequency generation (SFG) spectroscopy: CO adsorption on Pd surfaces. Surf Sci 586:146CrossRefGoogle Scholar
  73. 73.
    Neurock M (1999) First-principles analysis of the hydrogenation of carbon monoxide over palladium. Topics Catal 9:135CrossRefGoogle Scholar
  74. 74.
    Mavrikakis M, Barteau MA (1998) Oxygenate reaction pathways on transition metal surfaces. J Mol Catal A 131:135CrossRefGoogle Scholar
  75. 75.
    Bäumer M, Libuda J, Neyman KM, Rösch N, Rupprechter G, Freund H-J (2007) Adsorption and reaction of methanol on supported palladium catalysts: Microscopic-level studies from ultrahigh vacuum to ambient pressure conditions. Phys Chem Chem Phys 9:3541CrossRefGoogle Scholar
  76. 76.
    Morkel M, Kaichev VV, Rupprechter G, Freund H-J, Prosvirin IP, Bukhtiyarov VI (2004) Methanol dehydrogenation and formation of carbonaceous overlayers on Pd(111) studied by high-pressure SFG and XPS spectroscopy. J Phys Chem B 108:12955CrossRefGoogle Scholar
  77. 77.
    Schalow T, Brandt B, Laurin M, Schauermann S, Libuda J, Freund H-J (2006) CO Oxidation on partially oxidized Pd nanoparticles. J Catal 242:58CrossRefGoogle Scholar
  78. 78.
    Desai SK, Neurock M, Kourtakis K (2002) A periodic density functional theory study of the dehydrogenation of methanol over Pt(111). J Phys Chem B 106:2559CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute of Materials Chemistry, Vienna University of TechnologyViennaAustria

Personalised recommendations