The Reactivity of Gas-Phase Metal Oxide Clusters: Systems for Understanding the Mechanisms of Heterogeneous Catalysts

  • Nelly M. Reilly
  • Grant E. Johnson
  • A. W. CastlemanJr.


Gas phase cluster studies can be employed to investigate the reactions occurring on a catalyst surface, thereby providing a complementary method to model the reaction mechanisms of condensed phase catalysis. Utilizing a guided ion beam mass spectrometer, studies are directed toward unraveling the influence of factors such as size, stoichiometry, oxidation and ionic charge state, elemental composition, and structure on the reactivity of metal oxide clusters. Particular emphasis is on identifying individual species that play an important role in effecting oxidation reactions and aid in elucidating the molecular level mechanisms of oxygen transfer processes.


Lower Unoccupied Molecular Orbital Gold Cluster Vanadium Oxide Oxide Cluster Ionic Charge State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Department of Energy, Grant Number DE-FG02-92ER14258 for financial support of the work described herein. We also acknowledge valuable research collaborations with the theoretical chemistry and physics groups of Professor Vlasta Bonačić -Koutecký at the Humboldt Universität zu Berlin, and Professor Shiv N. Khanna at the Virginia Commonwealth University. We thank Eric Tyo for helpful discussions and for proofreading the manuscript.


  1. 1.
    Muetterties EL (1977) Molecular metal clusters. Science 196:839CrossRefGoogle Scholar
  2. 2.
    Böhme DK, Schwarz H (2005) Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew Chem Int Ed 44:2336CrossRefGoogle Scholar
  3. 3.
    Anderson JA (2005) Supported metals in catalysis. Imperial College Press, LondonGoogle Scholar
  4. 4.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. John Wiley, New YorkGoogle Scholar
  5. 5.
    Yoon B, Hakkinen H, Landman U, Worz AS, Antonietti JM, Abbet S, Judai K, Heiz U (2005) Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403CrossRefGoogle Scholar
  6. 6.
    Zhang C, Yoon B, Landman U (2007) Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J Am Chem Soc 129:2228CrossRefGoogle Scholar
  7. 7.
    Sterrer M, Risse T, Pozzoni U, Giordano L, Heyde M, Rust H, Pacchioni G, Freund H (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98:096107CrossRefGoogle Scholar
  8. 8.
    Honkala K, Hakkinen H (2007) Au adsorption on regular and defected thin MgO(100) films supported by Mo. J Phys Chem C 111:4319CrossRefGoogle Scholar
  9. 9.
    Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153CrossRefGoogle Scholar
  10. 10.
    Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon-monoxide. J Catal 115:301CrossRefGoogle Scholar
  11. 11.
    Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) Low-temperature oxidation of CO over gold supported on TiO2, alpha-Fe2O3, and Co3O4. J Catal 144:175CrossRefGoogle Scholar
  12. 12.
    Daté M, Haruta M (2001) Moisture effect on CO oxidation over Au/TiO2 catalyst. J Catal 201:221CrossRefGoogle Scholar
  13. 13.
    Fialko EF, Kikhtenko AV, Goncharov VB, Zamaraev KI (1997) Similarities between reactions of methanol with MoxOy + in the gas-phase and over real catalysts. J Phys Chem B 101:5772CrossRefGoogle Scholar
  14. 14.
    Justes DR, Mitrić R, Moore NA, Bonačić-Koutecký V, Castleman AW Jr (2003) Theoretical and experimental consideration of the reactions between VxOy + and ethylene. J Am Chem Soc 125:6289CrossRefGoogle Scholar
  15. 15.
    Bell RC, Zemski KA, Castleman AW Jr (1999) Gas-phase chemistry of vanadium oxide cluster cations 3. Reactions with CCl4. J Phys Chem A 103:1585CrossRefGoogle Scholar
  16. 16.
    Justes DR, Moore NA, Castleman AW Jr (2004) Reactions of vanadium and niobium oxides with methanol. J Phys Chem B 108:3855CrossRefGoogle Scholar
  17. 17.
    Wong GS, Kragten DD, Vohs JM (2001) The oxidation of methanol to formaldehyde on TiO2(110)-supported vanadia films. J Phys Chem B 105:1366CrossRefGoogle Scholar
  18. 18.
    Bell RC, Zemski KA, Castleman AW Jr (1999) Size-specific reactivities of vanadium oxide cluster cations. J Cluster Sci 10:509CrossRefGoogle Scholar
  19. 19.
    Ebitani K, Hirano Y, Kim J-H, Morikawa A (1993) Decomposition of CCl4 by tt-phase niobium oxide. React Kinet Catal Lett 51:351CrossRefGoogle Scholar
  20. 20.
    Oyama ST, Middlebrook AM, Somorjai GA (1990) Kinetics of ethane oxidation on vanadium-oxide. J Phys Chem 94:5029CrossRefGoogle Scholar
  21. 21.
    Zemski KA, Justes DR, Bell RC, Castleman AW Jr (2001) Reactions of niobium and tantalum oxide cluster cations and anions with n-butane. J Phys Chem A 105:4410CrossRefGoogle Scholar
  22. 22.
    Bell RC, Castleman AW Jr (2002) Reactions of vanadium oxide cluster ions with 1, 3-butadiene and isomers of butane. J Phys Chem A 106:9893CrossRefGoogle Scholar
  23. 23.
    Grzybowska-Swierkosz B, Trifiro F, Vedrine JC (1997) Vanadia catalysts for selective oxidation of hydrocarbons and their derivatives – Preface. Appl Catal A Gen 157:1CrossRefGoogle Scholar
  24. 24.
    Whittborn AC, Costas M, Bloomberg MA, Siegbahn PM (1997) The C–H activation reaction of methane for all transition metal atoms from the three transition rows. J Chem Phys 107:4318CrossRefGoogle Scholar
  25. 25.
    Hinderling C, Feichtinger D, Plattner DA, Chen P (1997) A combined gas-phase, solution-phase, and computational study of C–H activation by cationic iridium(III) complexes. J Am Chem Soc 119:10793CrossRefGoogle Scholar
  26. 26.
    Hinderling C, Plattner DA, Chen P (1997) Direct observation of a dissociative mechanism for C–H activation by a cationic iridium(III) complex. Angew Chem Int Ed 36:243CrossRefGoogle Scholar
  27. 27.
    Wallace WT, Whetten RL (2002) Coadsorption of CO and O2 on selected gold clusters: Evidence for efficient room-temperature CO2 generation. J Am Chem Soc 124:7499CrossRefGoogle Scholar
  28. 28.
    Socaciu LD, Hagen J, Bernhardt TM, Wöste L, Heiz U, Häkkinen H, Landman U (2003) Catalytic CO oxidation by free Au-2(−): Experiment and theory. J Am Chem Soc 125:10437CrossRefGoogle Scholar
  29. 29.
    Bernhardt TM, Socaciu-Siebert LD, Hagen J, Wöste L (2005) Size and composition dependence in CO oxidation reaction on small free gold, silver, and binary silver-gold cluster anions. Appl Catal A Gen 291:170CrossRefGoogle Scholar
  30. 30.
    Bronstrup M, Schroder D, Kretzschmar I, Schwarz H, Harvey JN (2001) Platinum dioxide cation: Easy to generate experimentally but difficult to describe theoretically. J Am Chem Soc 123:142CrossRefGoogle Scholar
  31. 31.
    Armentrout PB (2001) Reactions and thermochemistry of small transition metal cluster ions. Annu Rev Phys Chem 52:423CrossRefGoogle Scholar
  32. 32.
    Bielañski A, Haber J (1991) Oxygen in catalysis. Marcel Dekker, Inc., New YorkGoogle Scholar
  33. 33.
    Costello CK, Kung MC, Oh H-S, Yang Y, Kung H-H (2002) Nature of the active site for CO oxidation on highly active Au/gamma-Al2O3. Appl Catal A Gen 232:159CrossRefGoogle Scholar
  34. 34.
    Oh H-S, Costello CK, Cheung C, Kung H-H, Kung MC (2001) Studies of surface science and catalysis – catalyst deactivation. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Hodge NA, Kiely CJ, Whyman R, Siddiqui MRH, Hutchings GJ, Pankhurst QA, Wagner FE, Rajaram RR, Golunski SE (2002) Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation. Catal Today 72:133CrossRefGoogle Scholar
  36. 36.
    Davis RJ (2003) All that glitters is not Au–O. Science 301:926CrossRefGoogle Scholar
  37. 37.
    Wagner RL, Vann WD, Castleman AW Jr (1997) A technique for efficiently generating bimetallic clusters. Rev Sci Instrum 68:3010CrossRefGoogle Scholar
  38. 38.
    Bell RC, Zemski KA, Justes DR, Castleman AW Jr (2001) Formation, structure and bond dissociation thresholds of gas-phase vanadium oxide cluster ions. J Chem Phys 114:798CrossRefGoogle Scholar
  39. 39.
    Armentrout PB (2003) Threshold collision-induced dissociations for the determination of accurate gas-phase binding energies and reaction barriers. Top Curr Chem 225:233CrossRefGoogle Scholar
  40. 40.
    Moore NA, Mitrić R, Justes DR, Bonačić-Koutecký V, Castleman AW Jr (2006) Kinetic analysis of the reaction between (V2O5)(n) = 1,2(+) and ethylene. J Phys Chem B 110:3015CrossRefGoogle Scholar
  41. 41.
    Zemski KA, Justes DR, Castleman AW Jr (2002) Studies of metal oxide clusters: Elucidating reactive sites responsible for the activity of transition metal oxide catalysts. J Phys Chem B 106:6136CrossRefGoogle Scholar
  42. 42.
    Zemski KA, Justes DR, Castleman AW Jr (2001) Reactions of group V transition metal oxide cluster ions with ethane and ethylene. J Phys Chem A 105:10237CrossRefGoogle Scholar
  43. 43.
    Bell RC, Zemski KA, Kerns KP, Deng HT, Castleman AW Jr (1998) Reactivities and collision-induced dissociation of vanadium oxide cluster cations. J Phys Chem A 102:1733CrossRefGoogle Scholar
  44. 44.
    Ervin KM, Armentrout PB (1985) Translational energy dependence of Ar+ + XY → ArX+ + Y (XY = H2, D2, HD) from thermal to 30 eV cm. J Chem Phys 83:166CrossRefGoogle Scholar
  45. 45.
    Anderson JB, Fenn JB (1965) Velocity distributions in molecular beams from nozzle sources. Phys Fluids 8:780CrossRefGoogle Scholar
  46. 46.
    Langevin P (1905) A fundamental formula of kinetic theory. Ann Chim (Paris, Fr.) Phys 5:245Google Scholar
  47. 47.
    Anderson JA (1993) Infrared study of CO oxidation over Pt–Rh/Al2O3 catalysts. J Catal 142:153CrossRefGoogle Scholar
  48. 48.
    Nehasil V, Stará I, Matolín V (1996) Size effect study of carbon monoxide oxidation by Rh surfaces. Surf Sci 352:305CrossRefGoogle Scholar
  49. 49.
    Tanaka T, Nojima H, Yamamoto T, Takenaka S, Funabiki T, Yoshida S (1999) Structure of surface tantalate species and photo-oxidation of carbon monoxide over silica-supported tantalum oxide. Phys Chem Chem Phys 1:5235CrossRefGoogle Scholar
  50. 50.
    Kimble ML, Castleman AW Jr, Mitrić R, Bürgel C, Bonačić-Koutecký V (2004) Reactivity of atomic gold anions toward oxygen and the oxidation of CO: Experiment and theory. J Am Chem Soc 126:2526CrossRefGoogle Scholar
  51. 51.
    Kimble ML, Castleman AW Jr (2003) In: Proceedings of gold 2003: New industrial applications for gold conference, Vancouver, Canada, September 28–October 1Google Scholar
  52. 52.
    Kimble ML, Castleman AW Jr (2004) Gas-phase studies of AunOm + interacting with carbon monoxide. Int J Mass Spectrom 233:99CrossRefGoogle Scholar
  53. 53.
    Kimble ML, Moore NA, Johnson GE, Castleman AW Jr, Bürgel C, Mitrić R, Bonačić-Koutecký V (2006) Joint experimental and theoretical investigations of the reactivity of Au2On- and Au3On- (n = 1–5) with carbon monoxide. J Chem Phys 125:204311CrossRefGoogle Scholar
  54. 54.
    Kimble ML, Justes DR, Moore NA, Castleman AW Jr (2005) Proceedings of the international symposium on clusters and nano-assemblies: Physical and biological systems. World Scientific, Singapore, New Jersey, LondonGoogle Scholar
  55. 55.
    Kimble ML, Moore NA, Castleman AW Jr (2007) Reactivity of anionic gold oxide clusters towards CO: Experiment and theory. Eur Phys J D 43:205CrossRefGoogle Scholar
  56. 56.
    Kimble ML, Castleman AW Jr, Burgel C, Bonacic-Koutecky V (2006) Interactions of CO with AunOm- (n ³ 4). Int J Mass Spectrom 254:163CrossRefGoogle Scholar
  57. 57.
    Fielicke A, von Helden G, Meijer G, Pederson D, Simard B, Rayner D (2005) Gold cluster carbonyls: Saturated adsorption of CO on gold cluster cations, vibrational spectroscopy, and implications for their structures. J Am Chem Soc 127:8416CrossRefGoogle Scholar
  58. 58.
    Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B Environ 43:151CrossRefGoogle Scholar
  59. 59.
    Reilly NM, Reveles JU, Johnson GE, Castleman AW Jr, Khanna SN (2007) Experimental and theoretical study of the structure and reactivity of Fe1-2O£6– clusters with CO. J Phys Chem A 111:4158CrossRefGoogle Scholar
  60. 60.
    Reddy BV, Khanna SN (2004) Self-stimulated NO reduction and CO oxidation by iron oxide clusters. Phys Rev Lett 93:068301CrossRefGoogle Scholar
  61. 61.
    Reddy BV, Rasouli R, Hajaligol MR, Khanna SN (2004) Novel mechanism for oxidation of CO by Fe2O3 clusters. Fuel 83:1537CrossRefGoogle Scholar
  62. 62.
    Gord JR, Bemish RJ, Freiser BS (1990) Collision-induced dissociation of positive and negative copper-oxide cluster ions generated by direct laser desorption ionization of copper-oxide. Int J Mass Spectrom Ion Processes 102:115CrossRefGoogle Scholar
  63. 63.
    Spasov VA, Lee TH, Ervin KM (2000) Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls. J Chem Phys 112:1713CrossRefGoogle Scholar
  64. 64.
    Krückeberg S, Schweikhard L, Ziegler J, Dietrich G, Lützenkirchen K, Walther C (2001) Decay pathways and dissociation energies of copper clusters, Cun (+) (2 £ n £ 25), Cun (2+) (15 £ n £ 25). J Chem Phys 114:2955CrossRefGoogle Scholar
  65. 65.
    Lian L, Su CX, Armentrout PB (1992) Collision-induced dissociation of Nin + (n = 2–18) with Xe –bond energies, geometrical structures and dissociation pathways. J Chem Phys 96:7542CrossRefGoogle Scholar
  66. 66.
    Armentrout PB, Halle LF, Beachamp JL (1982) Reaction of Cr+, Mn+, Fe+, Co+, and Ni+ with O2 and N2O. Examination of the translational energy dependence of the cross sections of endothermic reactions. J Chem Phys 76:2449CrossRefGoogle Scholar
  67. 67.
    Li X-Q, Zhang W-X (2006) Iron nanoparticles: The core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638CrossRefGoogle Scholar
  68. 68.
    Tanaka S, Nakagawa K, Kanezaki E, Katoh M, Murai K-I, Moriga T, Nakabayashi I, Sugiyama S, Kidoguchi Y, Miwa K (2005) Catalytic activity of iron oxides supported on gamma-Al2O3 for methane oxidation. J Jpn Pet Inst 48:223CrossRefGoogle Scholar
  69. 69.
    Schröder D, Schwarz H, Clemmer D, Chen Y, Armentrout PB, Baranov VI, Böhme DK (1997) Activation of hydrogen and methane by thermalized FeO+ in the gas-phase as studied by multiple mass spectrometric techniques. Int J Mass Spectrom Ion Processes 161:175CrossRefGoogle Scholar
  70. 70.
    Yumura T, Amenomori T, Kagawa Y, Yoshizawa K (2002) Mechanism for the formaldehyde to formic acid and the formic acid to carbon dioxide conversions mediated by an iron-oxo species. J Phys Chem A 106:621CrossRefGoogle Scholar
  71. 71.
    Wu K-C, Tung Y-L, Chen Y-L, Chen Y-W (2004) Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions. Appl Catal B Environ 53:111CrossRefGoogle Scholar
  72. 72.
    Kozlov AI, Kozlova AP, Liu H, Iwasawa Y (1999) A new approach to active supported Au catalysts. Appl Catal A Gen 182:9CrossRefGoogle Scholar
  73. 73.
    Lin H-Y, Chen Y-W (2005) Low-temperature CO oxidation on Au/FexOy catalysts. Ind Eng Chem Res 44:4569CrossRefGoogle Scholar
  74. 74.
    Griffin JB, Armentrout PB (1997) Guided ion-beam studies of the reactions of Fen (+) (n = 1–18) with CO2: Iron cluster oxide bond energies. J Chem Phys 107:5345CrossRefGoogle Scholar
  75. 75.
    Schultz RH, Crellin KC, Armentrout PB (1991) Sequential bond-energies of Fe(CO)X + (X = 1–5) – systematic effects on collision-induced dissociation measurements. J Am Chem Soc 113:8590CrossRefGoogle Scholar
  76. 76.
    Schröder D, Jackson P, Schwarz H (2000) Dissociation patterns of small FemOn + (m = 1-4, n £ 6) cluster cations formed upon chemical ionization of Fe(CO)(5)/O2 mixtures. Eur J Inorg Chem 2000:1171CrossRefGoogle Scholar
  77. 77.
    Reilly NM, Johnson GE, Reveles JU, Khanna SN, Castleman AW Jr (2007) Influence of charge state on the reaction of FeO3 +/− with carbon monoxide. Chem Phys Lett 435:295CrossRefGoogle Scholar
  78. 78.
    Burgel C, Reilly NM, Johnson GE, Mitric R, Kimble ML, Castleman AW Jr, Bonacic-Koutecky V (2008) Influence of charge state on the mechanism of CO oxidation on gold clusters. J Am Chem Soc 130:1694CrossRefGoogle Scholar
  79. 79.
    Reilly NM, Reveles JU, Johnson GE, del Campo JM, Khanna SN, Koster AM, Castleman AW Jr (2007) Experimental and theoretical study of the structure and reactivity of FemOn + (m = 1, 2; n = 1–5) with CO. J Phys Chem C 111:19086CrossRefGoogle Scholar
  80. 80.
    Huang X, Zhai HJ, Waters T, Li J, Wang LS (2006) Experimental and theoretical characterization of superoxide complexes [W2O6(O2 (−))] and [W3O9(O2 (−))]: Models for the interaction of O2 with reduced W sites on tungsten oxide surfaces. Angew Chem Int Ed 45:657CrossRefGoogle Scholar
  81. 81.
    Huang TJ, Wang CH (2007) Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts. Chem Eng J 132:97CrossRefGoogle Scholar
  82. 82.
    Nassos S, Svensson EE, Boutonnet M, Jaras SG (2007) The influence of Ni load and support material on catalysts for the selective catalytic oxidation of ammonia in gasified biomass. Appl Catal B Environ 74:92CrossRefGoogle Scholar
  83. 83.
    Morales MR, Barbero BP, Cadus LE (2007) Combustion of volatile organic compounds on manganese iron or nickel mixed oxide catalysts. Appl Catal B Environ 74:1CrossRefGoogle Scholar
  84. 84.
    Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113CrossRefGoogle Scholar
  85. 85.
    Fan YF, Zhong Z, Ramesh K, Chen F, Chen L (2007) Effects of different types of gamma-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures. J Phys Chem C 111:3163CrossRefGoogle Scholar
  86. 86.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Elsevier, AmsterdamGoogle Scholar
  87. 87.
    Johnson GE, Tyo EC, Castleman AW Jr (2008) Oxidation of CO by aluminum oxide cluster ions in the gas phase. J Phys Chem A 112:4732CrossRefGoogle Scholar
  88. 88.
    van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  89. 89.
    Bonacic-Koutecky V, Burda J, Mitric R, Ge MF, Zampella G, Fantucci P (2002) Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters. J Chem Phys 117:3120CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nelly M. Reilly
    • 1
  • Grant E. Johnson
    • 1
  • A. W. CastlemanJr.
    • 1
  1. 1.Department of ChemistryPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations