Skip to main content

From Molecular Insights to Novel Catalysts Formulation

  • Chapter
  • First Online:
Model Systems in Catalysis
  • 1517 Accesses

Abstract

First-principles methods can be utilized to obtain elementary step mechanisms for chemical reactions on model systems. In this chapter, we will illustrate how this molecular information can be employed to motivate novel heterogeneous catalyst formulations. We will discuss a few examples where first-principles studies on idealized model systems were utilized, along with various experimental tools, to identify alloy catalysts that exhibit improved performance in a number of catalytic processes. We will emphasize the role of molecular approaches in the formulation of these catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ertl G, Knozinger J, and Weitkamp J (1997) In: Handbook of heterogeneous catalysis, vol. 5. Wiley-VCH

    Google Scholar 

  2. Chua YT, Stair PC, Wachs IE (2001) A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J Phys Chem B 105:8600

    Article  CAS  Google Scholar 

  3. Muller DA, Mills MJ (1999) Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater Sci Eng A 260:12

    Article  Google Scholar 

  4. Muller DA, Batson PE, Silcox J (1998) Measurement and models of electron-energy-loss spectroscopy core-level shifts in nickel aluminum intermetallics. Phys Rev B 58:11970

    Article  CAS  Google Scholar 

  5. Muller DA (1998) Simple model for relating EELS and XAS spectra of metals to changes in cohesive energy. Phys Rev B 58:5989

    Article  CAS  Google Scholar 

  6. Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90(4):046103

    Article  Google Scholar 

  7. Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320:86

    Article  CAS  Google Scholar 

  8. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864

    Article  Google Scholar 

  9. Abild-Pedersen F, Lytken O, Engbaek J, Nielsen G, Chorkendorff I, Norskov JK (2005) Methane activation on Ni(111): effects of poisons and step defects. Surf Sci 590:127

    Article  CAS  Google Scholar 

  10. Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365

    Article  CAS  Google Scholar 

  11. Linic S, Jankowiak J, Barteau MA (2004) Selectivity driven design of bimetallic ethylene epoxidation catalysts from first-principles. J Catal 226:245

    Article  CAS  Google Scholar 

  12. Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176

    Article  CAS  Google Scholar 

  13. Sun YG, Xia YN (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833

    Article  CAS  Google Scholar 

  14. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed Engl 47:2884

    Article  CAS  Google Scholar 

  15. Nikolla E, Holewinski A, Schwank J, Linic S (2006) Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. J Amer Chem Soc 128:11354

    Article  CAS  Google Scholar 

  16. Nikolla E, Schwank J, Linic S (2007) Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 250:85

    Article  CAS  Google Scholar 

  17. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913

    Article  CAS  Google Scholar 

  18. Rostrup-Nielsen JR (1984) Catalytic steam reforming. In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 5. Springer Verlag, New York, pp 1–117

    Google Scholar 

  19. Gorte RJ, Vohs JM (2003) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal 216:477

    Article  CAS  Google Scholar 

  20. Achenbach E, Riensche E (1994) Methane steam reforming kinetics for solid oxide fuel-cells. J Power Sources 52:283

    Article  CAS  Google Scholar 

  21. Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17

    Article  CAS  Google Scholar 

  22. Boder M, Dittmeyer R (2006) Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. J Power Sources 155:13

    Article  CAS  Google Scholar 

  23. Lashtabeg A, Skinner SJ (2006) Solid oxide fuel cells – a challenge for materials chemists? J Mater Chem 16:3161

    Article  CAS  Google Scholar 

  24. Timmermann H, Fouquet D, Weber A, Ivers-Tiffee E, Hennings U, Reimert R (2006) Internal reforming of methane at Ni/YSZ and Ni/CGO SOFC cermet anodes. Fuel Cells 6:307

    Article  CAS  Google Scholar 

  25. Dicks AL, Pointon KD, Siddle A (2000) Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode. J Power Sources 86:523

    Article  CAS  Google Scholar 

  26. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63

    Article  CAS  Google Scholar 

  27. Morel B, Laurencin J, Bultel Y, Lefebvre-Joud F (2005) Anode-supported SOFC model centered on the direct internal reforming. J Electrochem Soc 152:A1382

    Article  CAS  Google Scholar 

  28. Triantafyllopoulos NC, Neophytides SG (2003) The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni-YSZ cermet catalysts. J Catal 217:324

    CAS  Google Scholar 

  29. Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y, Ueno A, Omoshiki K, Aizawa M (2002) Study on steam reforming of CH4 and C-2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 112:588

    Article  CAS  Google Scholar 

  30. Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Steam reforming of liquid hydrocarbons. Recent Advances in Basic and Applied Aspects of Industrial Catalysis 113:81

    Google Scholar 

  31. Rostrup-Nielsen J, Norskov JK (2006) Step sites in syngas catalysis. Top Catal 40:45

    Article  CAS  Google Scholar 

  32. Abild-Pedersen F, Norskov JK, Rostrup-Nielsen JR, Sehested J, Helveg S (2006) Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys Rev B 73

    Google Scholar 

  33. Chen D, Christensen KO, Ochoa-Fernandez E, Yu ZX, Totdal B, Latorre N, Monzon A, Holmen A (2005) Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 229:82

    Article  CAS  Google Scholar 

  34. Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426

    Article  CAS  Google Scholar 

  35. Trimm DL (1997) Coke formation and minimization during steam reforming reactions. Catal Today 37:233

    Article  CAS  Google Scholar 

  36. Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Hydrogen and synthesis gas by steam- and CO2 reforming. Adv Catal 47:65

    Article  CAS  Google Scholar 

  37. Kim H, Lu C, Worrell WL, Gorte RJ, Vohs JM (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247

    Article  CAS  Google Scholar 

  38. Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3

    Article  CAS  Google Scholar 

  39. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR et al (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105

    Article  CAS  Google Scholar 

  40. Hou ZY, Yokota O, Tanaka T, Yashima T (2004) Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane. Appl Surf Sci 233:58

    Article  CAS  Google Scholar 

  41. Nichio N, Casella ML, Santori GF, Ponzi EN, Ferretti OA (2000) Stability promotion of Ni/alpha-Al2O3 catalysts by tin added via surface organometallic chemistry on metals – application in methane reforming processes. Catal Today 62:231

    Article  CAS  Google Scholar 

  42. Shabaker JW, Huber GW, Dumesic JA (2004) Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal 222:180

    Article  CAS  Google Scholar 

  43. Xu J, Saeys M (2006) Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron. J Catal 242:217

    Article  CAS  Google Scholar 

  44. Strohm JJ, Zheng J, Song CS (2006) Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh-Ni catalysts for fuel cells. J Catal 238:309

    Article  CAS  Google Scholar 

  45. Rostrup-Nielsen JR, Christiansen LJ (1995) Internal steam reforming in fuel-cells and alkali poisoning. Appl Catal A 126:381

    Article  CAS  Google Scholar 

  46. Ul-Haque I, Trimm DL (1997) Process for steam reforming of hydrocarbons. In: Ostrolenk, Faber, Gerb & Soffen, LLP. Haldor Topsoe

    Google Scholar 

  47. Wei JM, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370

    Article  CAS  Google Scholar 

  48. Watwe RM, Bengaard HS, Rostrup-Nielsen JR, Dumesic JA, Norskov JK (2000) Theoretical studies of stability and reactivity of CHx species on Ni(111). J Catal 189:16

    Article  CAS  Google Scholar 

  49. Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA (2005) Sn-modified Ni catalysts for aqueous-phase reforming: characterization and deactivation studies. J Catal 231:67

    Article  CAS  Google Scholar 

  50. Padeste C, Trimm DL, Lamb RN (1993) Characterization of Sn doped Ni/Al2O3 steam reforming catalysts by XPS. Catal Lett 17:333

    Article  CAS  Google Scholar 

  51. Rostrup-Nielsen JR (1984) Sulfur-passivated nickel-catalysts for carbon-free steam reforming of methane. J Catal 85:31

    Article  CAS  Google Scholar 

  52. Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys Rev B 77

    Google Scholar 

  53. Van de Walle A, Ceder G (2002) Automating first-principles phase diagram calculations. J Phase Equilib 23:348

    Article  Google Scholar 

  54. Zunger A, Wang LG, Hart GLW, Sanati M (2002) Obtaining Ising-like expansions for binary alloys from first-principles. Modell Simul Mater Sci Eng 10:685

    Article  CAS  Google Scholar 

  55. Zarkevich NA, Johnson DD (2004) Reliable first-principles alloy thermodynamics via truncated cluster expansions. Phys Rev Lett 92:255702

    Article  Google Scholar 

  56. Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Evolutionary approach for determining first-principles hamiltonians. Nat Mater 4:391

    Article  CAS  Google Scholar 

  57. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307:555

    Article  CAS  Google Scholar 

  58. Linic S, Barteau MA (2003) Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J Catal 214:200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of DOE-BES, Division of Chemical Sciences (FG-02-05ER15686), DOE-NETL (FC26-05-NT-42516), and NSF (CAREER: CTS-0543067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suljo Linic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nikolla, E., Linic, S. (2010). From Molecular Insights to Novel Catalysts Formulation. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_13

Download citation

Publish with us

Policies and ethics