From Molecular Insights to Novel Catalysts Formulation



First-principles methods can be utilized to obtain elementary step mechanisms for chemical reactions on model systems. In this chapter, we will illustrate how this molecular information can be employed to motivate novel heterogeneous catalyst formulations. We will discuss a few examples where first-principles studies on idealized model systems were utilized, along with various experimental tools, to identify alloy catalysts that exhibit improved performance in a number of catalytic processes. We will emphasize the role of molecular approaches in the formulation of these catalysts.


Density Functional Theory Density Functional Theory Calculation Surface Alloy Scanning Transmission Electron Microscopy Elementary Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the support of DOE-BES, Division of Chemical Sciences (FG-02-05ER15686), DOE-NETL (FC26-05-NT-42516), and NSF (CAREER: CTS-0543067).


  1. 1.
    Ertl G, Knozinger J, and Weitkamp J (1997) In: Handbook of heterogeneous catalysis, vol. 5. Wiley-VCHGoogle Scholar
  2. 2.
    Chua YT, Stair PC, Wachs IE (2001) A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J Phys Chem B 105:8600CrossRefGoogle Scholar
  3. 3.
    Muller DA, Mills MJ (1999) Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Mater Sci Eng A 260:12CrossRefGoogle Scholar
  4. 4.
    Muller DA, Batson PE, Silcox J (1998) Measurement and models of electron-energy-loss spectroscopy core-level shifts in nickel aluminum intermetallics. Phys Rev B 58:11970CrossRefGoogle Scholar
  5. 5.
    Muller DA (1998) Simple model for relating EELS and XAS spectra of metals to changes in cohesive energy. Phys Rev B 58:5989CrossRefGoogle Scholar
  6. 6.
    Reuter K, Scheffler M (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys Rev Lett 90(4):046103CrossRefGoogle Scholar
  7. 7.
    Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 320:86CrossRefGoogle Scholar
  8. 8.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:B864CrossRefGoogle Scholar
  9. 9.
    Abild-Pedersen F, Lytken O, Engbaek J, Nielsen G, Chorkendorff I, Norskov JK (2005) Methane activation on Ni(111): effects of poisons and step defects. Surf Sci 590:127CrossRefGoogle Scholar
  10. 10.
    Bengaard HS, Norskov JK, Sehested J, Clausen BS, Nielsen LP, Molenbroek AM, Rostrup-Nielsen JR (2002) Steam reforming and graphite formation on Ni catalysts. J Catal 209:365CrossRefGoogle Scholar
  11. 11.
    Linic S, Jankowiak J, Barteau MA (2004) Selectivity driven design of bimetallic ethylene epoxidation catalysts from first-principles. J Catal 226:245CrossRefGoogle Scholar
  12. 12.
    Sun YG, Xia YN (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176CrossRefGoogle Scholar
  13. 13.
    Sun YG, Xia YN (2002) Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv Mater 14:833CrossRefGoogle Scholar
  14. 14.
    Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed Engl 47:2884CrossRefGoogle Scholar
  15. 15.
    Nikolla E, Holewinski A, Schwank J, Linic S (2006) Controlling carbon surface chemistry by alloying: carbon tolerant reforming catalyst. J Amer Chem Soc 128:11354CrossRefGoogle Scholar
  16. 16.
    Nikolla E, Schwank J, Linic S (2007) Promotion of the long-term stability of reforming Ni catalysts by surface alloying. J Catal 250:85CrossRefGoogle Scholar
  17. 17.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279:1913CrossRefGoogle Scholar
  18. 18.
    Rostrup-Nielsen JR (1984) Catalytic steam reforming. In: Anderson JR, Boudart M (eds) Catalysis: science and technology, vol 5. Springer Verlag, New York, pp 1–117Google Scholar
  19. 19.
    Gorte RJ, Vohs JM (2003) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. J Catal 216:477CrossRefGoogle Scholar
  20. 20.
    Achenbach E, Riensche E (1994) Methane steam reforming kinetics for solid oxide fuel-cells. J Power Sources 52:283CrossRefGoogle Scholar
  21. 21.
    Atkinson A, Barnett S, Gorte RJ, Irvine JTS, Mcevoy AJ, Mogensen M, Singhal SC, Vohs J (2004) Advanced anodes for high-temperature fuel cells. Nat Mater 3:17CrossRefGoogle Scholar
  22. 22.
    Boder M, Dittmeyer R (2006) Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. J Power Sources 155:13CrossRefGoogle Scholar
  23. 23.
    Lashtabeg A, Skinner SJ (2006) Solid oxide fuel cells – a challenge for materials chemists? J Mater Chem 16:3161CrossRefGoogle Scholar
  24. 24.
    Timmermann H, Fouquet D, Weber A, Ivers-Tiffee E, Hennings U, Reimert R (2006) Internal reforming of methane at Ni/YSZ and Ni/CGO SOFC cermet anodes. Fuel Cells 6:307CrossRefGoogle Scholar
  25. 25.
    Dicks AL, Pointon KD, Siddle A (2000) Intrinsic reaction kinetics of methane steam reforming on a nickel/zirconia anode. J Power Sources 86:523CrossRefGoogle Scholar
  26. 26.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63CrossRefGoogle Scholar
  27. 27.
    Morel B, Laurencin J, Bultel Y, Lefebvre-Joud F (2005) Anode-supported SOFC model centered on the direct internal reforming. J Electrochem Soc 152:A1382CrossRefGoogle Scholar
  28. 28.
    Triantafyllopoulos NC, Neophytides SG (2003) The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni-YSZ cermet catalysts. J Catal 217:324Google Scholar
  29. 29.
    Takeguchi T, Kani Y, Yano T, Kikuchi R, Eguchi K, Tsujimoto K, Uchida Y, Ueno A, Omoshiki K, Aizawa M (2002) Study on steam reforming of CH4 and C-2 hydrocarbons and carbon deposition on Ni-YSZ cermets. J Power Sources 112:588CrossRefGoogle Scholar
  30. 30.
    Rostrup-Nielsen JR, Christensen TS, Dybkjaer I (1998) Steam reforming of liquid hydrocarbons. Recent Advances in Basic and Applied Aspects of Industrial Catalysis 113:81Google Scholar
  31. 31.
    Rostrup-Nielsen J, Norskov JK (2006) Step sites in syngas catalysis. Top Catal 40:45CrossRefGoogle Scholar
  32. 32.
    Abild-Pedersen F, Norskov JK, Rostrup-Nielsen JR, Sehested J, Helveg S (2006) Mechanisms for catalytic carbon nanofiber growth studied by ab initio density functional theory calculations. Phys Rev B 73Google Scholar
  33. 33.
    Chen D, Christensen KO, Ochoa-Fernandez E, Yu ZX, Totdal B, Latorre N, Monzon A, Holmen A (2005) Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. J Catal 229:82CrossRefGoogle Scholar
  34. 34.
    Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, Abild-Pedersen F, Norskov JK (2004) Atomic-scale imaging of carbon nanofibre growth. Nature 427:426CrossRefGoogle Scholar
  35. 35.
    Trimm DL (1997) Coke formation and minimization during steam reforming reactions. Catal Today 37:233CrossRefGoogle Scholar
  36. 36.
    Rostrup-Nielsen JR, Sehested J, Norskov JK (2002) Hydrogen and synthesis gas by steam- and CO2 reforming. Adv Catal 47:65CrossRefGoogle Scholar
  37. 37.
    Kim H, Lu C, Worrell WL, Gorte RJ, Vohs JM (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247CrossRefGoogle Scholar
  38. 38.
    Trimm DL (1999) Catalysts for the control of coking during steam reforming. Catal Today 49:3CrossRefGoogle Scholar
  39. 39.
    Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR et al (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105CrossRefGoogle Scholar
  40. 40.
    Hou ZY, Yokota O, Tanaka T, Yashima T (2004) Surface properties of a coke-free Sn doped nickel catalyst for the CO2 reforming of methane. Appl Surf Sci 233:58CrossRefGoogle Scholar
  41. 41.
    Nichio N, Casella ML, Santori GF, Ponzi EN, Ferretti OA (2000) Stability promotion of Ni/alpha-Al2O3 catalysts by tin added via surface organometallic chemistry on metals – application in methane reforming processes. Catal Today 62:231CrossRefGoogle Scholar
  42. 42.
    Shabaker JW, Huber GW, Dumesic JA (2004) Aqueous-phase reforming of oxygenated hydrocarbons over Sn-modified Ni catalysts. J Catal 222:180CrossRefGoogle Scholar
  43. 43.
    Xu J, Saeys M (2006) Improving the coking resistance of Ni-based catalysts by promotion with subsurface boron. J Catal 242:217CrossRefGoogle Scholar
  44. 44.
    Strohm JJ, Zheng J, Song CS (2006) Low-temperature steam reforming of jet fuel in the absence and presence of sulfur over Rh and Rh-Ni catalysts for fuel cells. J Catal 238:309CrossRefGoogle Scholar
  45. 45.
    Rostrup-Nielsen JR, Christiansen LJ (1995) Internal steam reforming in fuel-cells and alkali poisoning. Appl Catal A 126:381CrossRefGoogle Scholar
  46. 46.
    Ul-Haque I, Trimm DL (1997) Process for steam reforming of hydrocarbons. In: Ostrolenk, Faber, Gerb & Soffen, LLP. Haldor TopsoeGoogle Scholar
  47. 47.
    Wei JM, Iglesia E (2004) Isotopic and kinetic assessment of the mechanism of reactions of CH4 with CO2 or H2O to form synthesis gas and carbon on nickel catalysts. J Catal 224:370CrossRefGoogle Scholar
  48. 48.
    Watwe RM, Bengaard HS, Rostrup-Nielsen JR, Dumesic JA, Norskov JK (2000) Theoretical studies of stability and reactivity of CHx species on Ni(111). J Catal 189:16CrossRefGoogle Scholar
  49. 49.
    Shabaker JW, Simonetti DA, Cortright RD, Dumesic JA (2005) Sn-modified Ni catalysts for aqueous-phase reforming: characterization and deactivation studies. J Catal 231:67CrossRefGoogle Scholar
  50. 50.
    Padeste C, Trimm DL, Lamb RN (1993) Characterization of Sn doped Ni/Al2O3 steam reforming catalysts by XPS. Catal Lett 17:333CrossRefGoogle Scholar
  51. 51.
    Rostrup-Nielsen JR (1984) Sulfur-passivated nickel-catalysts for carbon-free steam reforming of methane. J Catal 85:31CrossRefGoogle Scholar
  52. 52.
    Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys Rev B 77Google Scholar
  53. 53.
    Van de Walle A, Ceder G (2002) Automating first-principles phase diagram calculations. J Phase Equilib 23:348CrossRefGoogle Scholar
  54. 54.
    Zunger A, Wang LG, Hart GLW, Sanati M (2002) Obtaining Ising-like expansions for binary alloys from first-principles. Modell Simul Mater Sci Eng 10:685CrossRefGoogle Scholar
  55. 55.
    Zarkevich NA, Johnson DD (2004) Reliable first-principles alloy thermodynamics via truncated cluster expansions. Phys Rev Lett 92:255702CrossRefGoogle Scholar
  56. 56.
    Hart GLW, Blum V, Walorski MJ, Zunger A (2005) Evolutionary approach for determining first-principles hamiltonians. Nat Mater 4:391CrossRefGoogle Scholar
  57. 57.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307:555CrossRefGoogle Scholar
  58. 58.
    Linic S, Barteau MA (2003) Construction of a reaction coordinate and a microkinetic model for ethylene epoxidation on silver from DFT calculations and surface science experiments. J Catal 214:200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations