Chemical Bonding on Metal Surfaces



X-ray spectroscopy provides a number of experimental techniques that give an atom-specific projection of the electronic structure. When applied to surface adsorbates in combination with theoretical density functional spectrum simulations, it becomes an extremely powerful tool to analyze in detail the surface chemical bond. This is of great relevance to heterogeneous catalysis as discussed in depth for a number of example systems taken from the five categories of bonding types: (i) atomic radical, (ii) diatomics with unsaturated π-systems (Blyholder model), (iii) unsaturated hydrocarbons (Dewar–Chatt–Duncanson model), (iv) lone-pair interactions, and (v) saturated hydrocarbons (physisorption).


Adsorption Energy Unsaturated Hydrocarbon Ultraviolet Photoelectron Spectroscopy Antibonding State Chemisorption Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge all the people involved in the various projects on which this chapter is based. This work was supported by the National Science Foundation under Contract No. CHE-0431425 (Stanford Environmental Molecular Science Institute); the U.S. Department of Energy, Office of Basic Energy Sciences, through the Stanford Synchrotron Radiation Laboratory, Contract No. DE-AC02-05CH11231, and under the auspices of the President’s Hydrogen Fuel Initiative; the Swedish Foundation for Strategic Research and the Swedish Natural Science Research Council.


  1. 1.
    Hammer B, Nørskov JK (2000) Theoretical surface science and catalysis – Calculations and concepts. Adv Catal 45:71CrossRefGoogle Scholar
  2. 2.
    Logadottir A, Roda TH, Nørskov JK, Hammer B, Dahl S, Jacobsen CJH (2001) The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J Catal 197:229CrossRefGoogle Scholar
  3. 3.
    Nilsson A, Pettersson LGM (2004) Chemical bonding on surfaces probed by X-ray emission spectroscopy and density functional theory. Surf Sci Reps 55:49CrossRefGoogle Scholar
  4. 4.
    Nilsson A, Pettersson LGM (2008) Adsorbate Electronic Structure and Bonding on Metal Surfaces, In: Nilsson, A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam 57-142Google Scholar
  5. 5.
    Kevan SD (1992) Angle-resolved photoemission. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Nilsson A, Hasselström J, Föhlisch A, Karis O, Pettersson LGM, Nyberg M, Triguero L (2000) Probing chemical bonding in adsorbates using X-ray emission spectroscopy. J El Spec Rel Phenom 110/111:15CrossRefGoogle Scholar
  7. 7.
    Nilsson A (2002) Application of core level spectroscopy to adsorbates. J El Spec Rel Phenom 126:3CrossRefGoogle Scholar
  8. 8.
    Nilsson A, Tillborg H, Mårtensson N (1991) Electronic structure of adsorbates from core level shake-up spectra: CO and N2 on Ni(100). Phys Rev Lett 67:1015CrossRefGoogle Scholar
  9. 9.
    Nilsson A, Weinelt M, Wiell T, Bennich P, Karis O, Wassdahl N, Stöhr J, Samant M (1997) An atom specific look at the surface chemical bond. Phys Rev Lett 87:2847CrossRefGoogle Scholar
  10. 10.
    Nilsson A, Bennich P, Wiell T, Wassdahl N, Mårtensson N, Nordgren J, Björneholm O, Stöhr J (1995) Direct probing of the adsorbate-substrate chemical bond using angle resolved X-ray emission spectroscopy. Phys Rev B 51:10244CrossRefGoogle Scholar
  11. 11.
    Horn K, Dinardo J, Eberhardt W, Freund HJ (1982) The adsorption of N2: Chemisorbed on Ni(110) and physisorbed on Pd(111). Surf Sci 118:465CrossRefGoogle Scholar
  12. 12.
    Bennich P, Wiell T, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Pettersson LGM, Stöhr J, Samant M (1998) The nature of the surface chemical bond in N2 on Ni(100) studied by X-ray emission spectroscopy and ab initio calculations. Phys Rev B 57:9274CrossRefGoogle Scholar
  13. 13.
    Freund HJ, Kuhlenbeck H (1995) Band-Structure Determination of Adsorbates, In: Springer Series in Surface Sciences, Vol. 35, pages 9-63; Eberhardt W (ed) Applications of Synchrotron Radiation. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  14. 14.
    Stöhr J (1992) NEXAFS spectroscopy. Springer-Verlag, Berlin-HeidelbergGoogle Scholar
  15. 15.
    Bagus PS, Hermann K, Bauschlicher CW (1984) On the nature of the bonding of lone pair ligands to a transition metal. J Chem Phys 81:1966CrossRefGoogle Scholar
  16. 16.
    Bagus PS, Hermann K (1986) New analysis of lone-pair binding-energy shifts in photoemision from adsorbed molecules: CO and NH3 on Cu(100). Phys Rev B 33:2987CrossRefGoogle Scholar
  17. 17.
    Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41CrossRefGoogle Scholar
  18. 18.
    Newns DM (1969) Self-consistent model of hydrogen chemisorption. Phys Rev 178:1123CrossRefGoogle Scholar
  19. 19.
    Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Nørskov JK (2005) The electronic structure effect in heterogeneous catalysis. Catal Lett 100:111CrossRefGoogle Scholar
  20. 20.
    Lang ND, Williams AR (1978) Theory of atomic chemisorption on simple metals. Phys Rev B 18:616CrossRefGoogle Scholar
  21. 21.
    Hammer B, Nørskov JK (1995) Noble metals. Nature 376:238CrossRefGoogle Scholar
  22. 22.
    Bligaard T, Nørskov JK (2008) Heterogeneous Catalysis, In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier 255-322Google Scholar
  23. 23.
    Allyn CL, Gustafsson T, Plummer EW (1977) The chemisorption of CO on Cu(100) studied with angle resolved photoelectron spectroscopy. Solid State Commun 24:531CrossRefGoogle Scholar
  24. 24.
    Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68:2772CrossRefGoogle Scholar
  25. 25.
    Delbecq F, Sautet P (1999) Density functional periodic study of CO adsorption on the Pd3Mn(100) alloy surface: comparison with Pd(100). Phys Rev B 59:5142CrossRefGoogle Scholar
  26. 26.
    Eastman DE, Cashion K (1971) Photoemission energy-level measurements of chemisorbed CO and O on Ni. Phys Rev Lett 27:1520CrossRefGoogle Scholar
  27. 27.
    Gumhalter B, Wandelt K, Avouris P (1988) 2π* resonance features in the electronic spectra of chemisorbed CO. Phys Rev B 37:8048CrossRefGoogle Scholar
  28. 28.
    Gustafsson T, Plummer EW (1977) Valence Photoemission from Adsorbates, In: Feuerbacher B, Fitton B, Willis R (eds) Photoemission from surfaces Wiley and sons, New York 353 Google Scholar
  29. 29.
    Hammer B, Morikawa Y, Nørskov JK (1996) CO chemisorption at metal surfaces and overlayers. Phys Rev Lett 76:2141CrossRefGoogle Scholar
  30. 30.
    Sung SS, Hoffmann R (1985) How carbon monoxide bonds to metal surfaces. J Am Chem Soc 107:578CrossRefGoogle Scholar
  31. 31.
    Dubois D, Hoffmann R (1977) Diazenido, dinitrogen and related complexes. Nouv J Chim 1:479Google Scholar
  32. 32.
    Hoffmann R, Chen MML, Thorn D (1977) Qualitative discussion of alternative coordination modes of diatomic ligands in transition-metal complexes. Inorg Chem 16:503CrossRefGoogle Scholar
  33. 33.
    Föhlisch A, Nyberg M, Hasselström J, Karis O, Pettersson LGM, Nilsson A (2000) How CO adsorbs in different sites. Phys Rev Lett 85:3309Google Scholar
  34. 34.
    Föhlisch A, Nyberg M, Bennich P, Triguero L, Hasselström J, Karis O, Pettersson LGM, Nilsson A (2000) The bonding of CO to metal surfaces. J Chem Phys 112:1946CrossRefGoogle Scholar
  35. 35.
    Föhlisch A, Stichler M, Keller C, Wurth W, Nilsson A (2004) X-ray emission spectroscopy of CO on Ru(0001): Comparison to CO on Ni(100) and Cu(100). J Chem Phys 121:4848CrossRefGoogle Scholar
  36. 36.
    Wimmer E, Fu C, Freeman A (1985) Catalytic promotion and poisoning: All-electron local-density-functional theory of CO on Ni(001) surfaces coadsorbed with K or S. Phys Rev Lett 55:2618CrossRefGoogle Scholar
  37. 37.
    Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819CrossRefGoogle Scholar
  38. 38.
    Dewar MJS (1951) A review of π complex theory. Bull Soc Chim France 18:C71Google Scholar
  39. 39.
    Chatt J, Duncanson LA (1953) Olefin coordination compounds. Part III. Infrared spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 2939Google Scholar
  40. 40.
    Triguero L, Föhlisch A, Väterlein P, Hasselström J, Weinelt M, Pettersson LGM, Luo Y, Ågren H, Nilsson A (2000) Direct experimental measurement of donation/backdonation in unsaturated hydrocarbons on metal. J Am Chem Soc 122:12310CrossRefGoogle Scholar
  41. 41.
    Triguero L, Luo Y, Pettersson LGM, Ågren H, Väterlein P, Weinelt M, Föhlisch A, Hasselström J, Karis O, Nilsson A (1999) Resonant soft X-ray emission spectroscopy of surface adsorbates: Theory, computations and measurements of ethylene and benzene on Cu(110). Phys Rev B 59:5189CrossRefGoogle Scholar
  42. 42.
    Öström H, Föhlisch A, Nyberg M, Weinelt M, Heske C, Pettersson LGM, Nilsson A (2004) Ethylene on Cu(110) and Ni(110): Electronic structure and bonding derived from X-ray spectroscopy and theory. Surf Sci 559:85CrossRefGoogle Scholar
  43. 43.
    Triguero L, Pettersson LGM, Minaev B, Ågren H (1998) Spin uncoupling in surface chemisorption of unsaturated hydrocarbons. J Chem Phys 108:1193CrossRefGoogle Scholar
  44. 44.
    Carter EA, Koel BE (1990) A method for estimating surface reaction energetics: Application to the mechanism of ethylene decomposition on Pt(111). Surf Sci 226:339CrossRefGoogle Scholar
  45. 45.
    Dahl S, Logadottir A, Egeberg C, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814CrossRefGoogle Scholar
  46. 46.
    Dahl S, Logadottir A, Jacobsen CH, Nørskov JK (2001) Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis. Appl Catal A222 (2001)Google Scholar
  47. 47.
    Grunze M, Golze M, Hirschwald W, Freund HJ, Plum H, Selp U, Tsai M, Ertl G, Kuppers J (1984) π -bonded N2 on Fe(111): The precursor for dissociation. Phys Rev Lett 53:850CrossRefGoogle Scholar
  48. 48.
    Huber KP, Hertzberg G (1979) Molecular spectra and molecular structure. Van Nostrand Reinhold, New YorkGoogle Scholar
  49. 49.
    Guest RJ, Hernnäs B, Bennich P, Björneholm O, Nilsson A, Palmer RE, Mårtensson N (1992) Orientation of a molecular precursor: a NEXAFS study of O2/Ag(110). Surf Sci 1992:239CrossRefGoogle Scholar
  50. 50.
    Puglia C, Nilsson A, Hernnäs B, Karis O, Bennich P, Mårtensson N (1995) Physisorbed, chemisorbed and dissociated O2 on Pt(111) studied by different core level spectroscopy methods. Surf Sci 342:119CrossRefGoogle Scholar
  51. 51.
    Sandell A, Nilsson A, Mårtensson N (1991) Lying down NO on Ni(100). Surf Sci 241:L1CrossRefGoogle Scholar
  52. 52.
    Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Structure and bonding of water on Pt(111). Phys Rev Lett 89:276102CrossRefGoogle Scholar
  53. 53.
    Michaelides A, Ranea VA, de Andres PL, King DA (2003) General model for water monomer adsorption on close-packed transition and noble metal surfaces. Phys Rev Lett 90:216102CrossRefGoogle Scholar
  54. 54.
    Schiros T, Takahashi O, Andersson K, Öström H, Pettersson LGM, Nilsson A, and Ogasawara H (2008) The role of substrate electrons in the wetting of a metal surface. J Chem Phys (submitted)Google Scholar
  55. 55.
    Öström H, Triguero L, Nyberg M, Ogasawara H, Pettersson LGM, Nilsson A (2003) Bonding of saturated hydrocarbons to metal surfaces. Phys Rev Lett 91:046102CrossRefGoogle Scholar
  56. 56.
    Öström H, Triguero L, Weiss K, Ogasawara H, Garnier MG, Nordlund D, Nyberg M, Pettersson LGM, Nilsson A (2003) Orbital rehybridization in n-octane adsorbed on Cu(110). J Chem Phys 118:3782CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anders Nilsson
    • 1
  • Lars Gunnar Moody Pettersson
    • 2
  1. 1.Stanford Synchrotron Radiation LaboratoryStanfordUSA
  2. 2.FYSIKUM, AlbaNova University Center, Stockholm UniversityStockholmSweden

Personalised recommendations