Skip to main content

The Incorporation of Added Metal Atoms into Structures of Reaction Intermediates on Catalytic Metal Surfaces

  • Chapter
  • First Online:
Model Systems in Catalysis

Abstract

In this chapter, we review the dynamic nature of catalytic metal surfaces and the effects of metal incorporation into surface reaction intermediates on their reactivity. Scanning tunneling microscopy allows the direct observation of surface reconstruction and dynamic reorganization of surfaces during adsorption, desorption, and surface reaction, and therefore, provides a powerful tool to relate the surface structures of adsorbed layers to reactivity when combined with quantitative temperature-programmed reaction spectroscopy, X-ray photoelectron spectroscopy and other tools. The incorporation of added metal atoms to the structure of adsorbates and reaction intermediates is a general surface phenomenon not restricted to more open, higher free energy single crystal planes, but also occurring on close-packed surfaces of low free energy. Metal atom incorporation into the surface oxide appears to be a guide to the possibility of incorporation of metal atoms into the structure of other intermediates. Added metal atoms can stabilize the structures of reaction intermediates and play an important role in their surface reactions. These observations dictate that the participation of added metal atoms be considered as a paradigm in metal catalyzed reactions, significantly affecting the theoretical treatment of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langmuir I (1915) Chemical reactions at low pressures. J Am Chem Soc 37:1139

    Article  CAS  Google Scholar 

  2. Langmuir I (1915) A theory of adsorption. Phys Rev 6:79

    Article  CAS  Google Scholar 

  3. Davisson C, Germer LH (1927) Diffraction of electrons by a crystal of nickel. Phys Rev 30:705

    Article  CAS  Google Scholar 

  4. Vanhove MA, Somorjai GA (1994) Adsorption and adsorbate-induced restructuring – a LEED perspective. Surf Sci 300:487

    Article  Google Scholar 

  5. Barker RA, Estrup PJ (1978) Hydrogen on tungsten(100) – adsorbate-induced surface reconstruction. Phys Rev Lett 41:1307

    Article  CAS  Google Scholar 

  6. Engel T, Rieder KH (1981) A molecular-beam diffraction study of H2 adsorption on Ni(110). Surf Sci 109:140

    Article  CAS  Google Scholar 

  7. Shih HD, Jona F, Jepsen DW, Marcus PM (1981) Metal-surface reconstruction induced by adsorbate – Fe(110)-p(2 × 2)-S. Phys Rev Lett 46:731

    Article  CAS  Google Scholar 

  8. Somorjai GA (1991) The flexible surface – correlation between reactivity and restructuring ability. Langmuir 7:3176

    Article  CAS  Google Scholar 

  9. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726

    CAS  Google Scholar 

  10. Guo XC, Madix RJ (2003) Real-time observation of surface reactivity and mobility with scanning tunneling microscopy. Acc Chem Res 36:471

    Article  CAS  Google Scholar 

  11. Ertl G (1967) Untersuchung von Oberflachenreaktionen Mittels Beugung Langsamer Elktronen (LEED) I. Wechselwirkung von O2 und N2O mit (110)-(111)-und (100)-Kupfer–Oberflachen. Surf Sci 6:208

    Article  Google Scholar 

  12. Coulman DJ, Wintterlin J, Behm RJ, Ertl G (1990) Novel mechanism for the formation of chemisorption phases – the (2 × 1)O-Cu(110) added-row reconstruction. Phys Rev Lett 64:1761

    Article  CAS  Google Scholar 

  13. Besenbacher F, Nørskov JK (1993) Oxygen-chemisorption on metal-surfaces – general trends for Cu, Ni and Ag. Prog Surf Sci 44:5

    Article  CAS  Google Scholar 

  14. Besenbacher F, Stensgaard I, Ruan L, Nørskov JK, Jacobsen KW (1992) Chemisorption of H, O, and S on Ni(110) – general trends. Surf Sci 272:334

    Article  CAS  Google Scholar 

  15. Alemozafar AR, Madix RJ (2004) Two-dimensional condensation anisotropic crystallization: H2/Ni(110). Surf Sci 557:231

    Article  CAS  Google Scholar 

  16. Leibsle FM, Francis SM, Davis R, Xiang N, Haq S, Bowker M (1994) Scanning-tunneling-microscopy studies of formaldehyde synthesis on Cu(110). Phys Rev Lett 72:2569

    Article  CAS  Google Scholar 

  17. Haq S, Leibsle FM (1997) Formic acid oxidation on Cu(110) surfaces as studied by STM: Reaction trends and surface structure. Surf Sci 375:81

    Article  CAS  Google Scholar 

  18. Alemozafar AR, Guo XC, Madix RJ (2003) Topographic nano-restructuring: Sulfur dioxide adsorption on Cu(110). Surf Sci 524:L84

    Article  CAS  Google Scholar 

  19. Guo XC, Madix RJ (2004) Determination of metal atoms incorporated in molecular intermediates: An STM study of acetylide on Ag(110). Surf Sci 564:21

    Article  CAS  Google Scholar 

  20. Alemozafar AR, Guo XC, Madix RJ, Hartmann N, Wang J (2002) Reaction of sulfur dioxide with Ag(110)-p(2 × 1)-O: A LEED, TPRS, and STM investigation. Surf Sci 504:223

    Article  CAS  Google Scholar 

  21. Alemozafar AR, Madix RJ (2004) The role of surface deconstruction in the autocatalytic decomposition of formate and acetate on Ni(110). J Phys Chem B 108:14374

    Article  CAS  Google Scholar 

  22. Zhou L, Gao W, Klust A, Madix RJ (2008) Stabilization of surface reaction interme­diates by added metal atoms on metal surfaces of low free energy. J Chem Phys 128(5):054703.1–054703.6

    Google Scholar 

  23. Falconer JL, Madix RJ (1974) Kinetics and mechanism of autocatalytic decomposition of HCOOH on clean Ni(110). Surf Sci 46:473

    Article  CAS  Google Scholar 

  24. Madix RJ, Falconer JL, Suszko AM (1976) Autocatalytic decomposition of acetic-acid on Ni(110). Surf Sci 54:6

    Article  CAS  Google Scholar 

  25. Munoz-Marquez MA, Tanner RE, Woodruff DP (2004) Surface and subsurface oxide formation on Ni(100) and Ni(111). Surf Sci 565:1

    Article  CAS  Google Scholar 

  26. Min BK, Deng X, Pinnaduwage D, Schalek R, Friend CM (2005) Oxygen-induced restructuring with release of gold atoms from Au(111). Phys Rev B 72:121410

    Article  Google Scholar 

  27. Min BK, Alemozafar AR, Biener MM, Biener J, Friend CM (2005) Reaction of Au(111) with sulfur and oxygen: Scanning tunneling microscopic study. Top Catal 36:77

    Article  CAS  Google Scholar 

  28. Shumbera RB, Kan HH, Weaver JF (2007) Oxidation of Pt(100)-hex-R0.7 degrees by gas-phase oxygen atoms. Surf Sci 601:235

    Article  CAS  Google Scholar 

  29. Shumbera RB, Kan HH, Weaver JF (2006) Adsorption of gas-phase oxygen atoms on Pt(100)-hex-R0.7 degrees: Evidence of a metastable chemisorbed phase. Surf Sci 600:2928

    Article  CAS  Google Scholar 

  30. Weaver JF, Chen JJ, Gerrard AL (2005) Oxidation of Pt(111) by gas-phase oxygen atoms. Surf Sci 592:83

    Article  CAS  Google Scholar 

  31. Guo XC, Madix RJ (2003) Imaging surface reactions at atomic resolution: A wealth of behavior on the nanoscale. J Phys Chem B 107:3105

    Article  CAS  Google Scholar 

  32. Jensen F, Besenbacher F, Laegsgaard E, Stensgaard I (1990) Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. Phys Rev B 42:9206

    Article  CAS  Google Scholar 

  33. Haase O, Koch R, Borbonus M, Rieder KH (1991) Role of regular steps on the formation of missing-row reconstructions – oxygen-chemisorption on Ni(771). Phys Rev Lett 66:1725

    Article  CAS  Google Scholar 

  34. Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253

    Article  CAS  Google Scholar 

  35. Orent TW, Bader SD (1982) LEED and ELS study of the initial oxidation of Pd(100). Surf Sci 115:323

    Article  CAS  Google Scholar 

  36. Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Gustafson J, Borg M, Rogal J, Reuter K, Andersen JN, Scheffler M (2003) The Pd(100)-(root 5 × root 5)R27 degrees-O surface oxide revisited. Surf Sci 541:101

    Article  CAS  Google Scholar 

  37. Kostelnik P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Sikola T, Varga P, Schmid M (2007) The Pd (100)-(root 5 × root 5)R27 degrees-O surface oxide: A LEED, DFT and STM study. Surf Sci 601:1574

    Article  CAS  Google Scholar 

  38. Michaelides A, Reuter K, Scheffler M (2005) When seeing is not believing: Oxygen on Ag(111), a simple adsorption system? J Vac Sci Technol A 23:1487

    Article  CAS  Google Scholar 

  39. Carlisle CI, King DA, Bocquet ML, Cerda J, Sautet P (2000) Imaging the surface and the interface atoms of an oxide film on Ag{111} by scanning tunneling microscopy: Experiment and theory. Phys Rev Lett 84:3899

    Article  CAS  Google Scholar 

  40. Schmid M, Reicho A, Stierle A, Costina I, Klikovits J, Kostelnik P, Dubay O, Kresse G, Gustafson J, Lundgren E, Andersen JN, Dosch H, Varga P (2006) Structure of Ag(111)-p(4 × 4)-O: No silver oxide. Phys Rev Lett 96:146102

    Article  CAS  Google Scholar 

  41. Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Laegsgaard E, Scheffler M, Besenbacher F (2006) Revisiting the structure of the p(4 × 4) surface oxide on Ag(111). Phys Rev Lett 96:146101

    Article  CAS  Google Scholar 

  42. Klust A, Madix RJ (2007) Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4 × 4)-O surface with CO. J Chem Phys 126:084707

    Article  Google Scholar 

  43. Nielsen LP, Besenbacher F, Laegsgaard E, Stensgaard I (1991) Nucleation and growth of a H-induced reconstruction of Ni(110). Phys Rev B 44:13156

    Article  CAS  Google Scholar 

  44. Osterlund L, Rasmussen PB, Thostrup P, Laegsgaard E, Stensgaard I, Besenbacher F (2001) Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys Rev Lett 86:460

    Article  CAS  Google Scholar 

  45. Yoshinobu J, Tanaka H, Kawai M (1995) Elucidation of hydrogen-induced (1 × 2) reconstructed structures on Pd(110) from 100 K to 300 K by scanning-tunneling-microscopy. Phys Rev B 51:4529

    Article  CAS  Google Scholar 

  46. Klink C, Olesen L, Besenbacher F, Stensgaard I, Laegsgaard E, Lang ND (1993) Interaction of C with Ni(100) – atom-resolved studies of the clock reconstruction. Phys Rev Lett 71:4350

    Article  CAS  Google Scholar 

  47. Klink C, Stensgaard I, Besenbacher F, Laegsgaard E (1995) An STM study of carbon-induced structures on Ni(111) – evidence for a carbidic-phase clock reconstruction. Surf Sci 342:250

    Article  CAS  Google Scholar 

  48. Klink C, Stensgaard I, Besenbacher F, Laegsgaard E (1996) Carbidic carbon on Ni(110): An STM study. Surf Sci 360:171

    Article  CAS  Google Scholar 

  49. Niehus H, Spitzl R, Besocke K, Comsa G (1991) N-induced (2x3) reconstruction of Cu(110) – evidence for long-range, highly directional interaction between Cu–N–Cu bonds. Phys Rev B 43:12619

    Article  CAS  Google Scholar 

  50. Leibsle FM (1993) A scanning-tunneling-microscopy study of the (2 × 2) P4g nitrogen-induced surface reconstruction on Ni(100). Surf Sci 297:98

    Article  CAS  Google Scholar 

  51. Murray PW, Leibsle FM, Thornton G, Bowker M, Dhanak VR, Baraldi A, Kiskinova M, Rosei R (1994) Nitrogen-induced reconstruction on Rh(110) – effect of oxygen on the growth and ordering of Rh–N chains. Surf Sci 304:48

    Article  CAS  Google Scholar 

  52. Mullins DR, Huntley DR, Overbury SH (1995) The Nature of the sulfur induced surface reconstruction on Ni(111). Surf Sci 323:L287

    Article  CAS  Google Scholar 

  53. Foss M, Feidenhansl R, Nielsen M, Findeisen E, Buslaps T, Johnson RL, Besenbacher F, Stensgaard I (1993) X-ray-diffraction investigation of the sulfur induced 4 × 1 reconstruction of Ni(110). Surf Sci 296:283

    Article  CAS  Google Scholar 

  54. Batteas JD, Dunphy JC, Somorjai GA, Salmeron M (1996) Coadsorbate induced reconstruction of a stepped Pt(111) surface by sulfur and CO: A novel surface restructuring mechanism observed by scanning tunneling microscopy. Phys Rev Lett 77:534

    Article  CAS  Google Scholar 

  55. Rieder KH, Stocker W (1985) The coverage-dependent ordering of chemisorbed hydrogen on the (110) surface of nickel. Surf Sci 164:55

    Article  CAS  Google Scholar 

  56. Christmann K, Chehab F, Penka V, Ertl G (1985) Surface reconstruction and surface explosion phenomena in the nickel (110) hydrogen system. Surf Sci 152:356

    Article  Google Scholar 

  57. Voigtlander B, Lehwald S, Ibach H (1989) Hydrogen adsorption and the adsorbate-induced Ni(110) reconstruction – an EELS study. Surf Sci 208:113

    Article  Google Scholar 

  58. Rieder KH (1983) Low-coverage ordered phases of hydrogen on Ni(110). Phys Rev B 27:7799

    Article  CAS  Google Scholar 

  59. Guo XC, Madix RJ (2002) Structural and morphological changes accompanying the reaction of ammonia with Ag(110)-p(2 × 1)-O: An STM study. Surf Sci 501:37

    Article  CAS  Google Scholar 

  60. Guo XC, Madix RJ (2002) Microscopic studies of NO2 on Ag(110)-p(2 × 1)-O and reactivity of surface nitrate. Surf Sci 496:39

    Article  CAS  Google Scholar 

  61. Alemozafar AR, Guo XC, Madix RJ (2002) Adsorption and reaction of sulfur dioxide with Cu(110) and Cu(110)-p(2 × 1)-O. J Chem Phys 116:4698

    Article  CAS  Google Scholar 

  62. Alemozafar AR, Madix RJ (2005) The adsorption of and reaction of NO2 on Ag(111)-p(4 × 4)-O and formation of surface nitrate. Surf Sci 587:193

    Article  CAS  Google Scholar 

  63. Alemozafar AR, Madix RJ (2005) Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag(111). J Chem Phys 122:214718

    Article  Google Scholar 

  64. Carley AF, Davies PR, Jones RV, Harikumar KR, Kulkarni GU, Roberts MW (2000) The structure of sulfur adlayers at Cu(110) surfaces: An STM and XPS study. Surf Sci 447:39

    Article  CAS  Google Scholar 

  65. Outka DA, Madix RJ, Fisher GB, Dimaggio C (1986) Oxidation of sulfur-dioxide on Ag(110) – vibrational study of the structure of intermediate complexes formed. J Phys Chem 90:4051

    Article  CAS  Google Scholar 

  66. Outka DA, Madix RJ, Fisher GB, Dimaggio CL (1986) Vibrational spectroscopy of sulfur-dioxide on the Ag(110) surface – comparison to inorganic complexes. Langmuir 2:406

    Article  CAS  Google Scholar 

  67. Outka DA, Madix RJ (1984) Sulfur-dioxide adsorption and reaction with atomic oxygen on the Ag(110) surface. Surf Sci 137:242

    Article  CAS  Google Scholar 

  68. Outka DA, Madix RJ (1982) The effect of atomic oxygen on the interaction of SO2 with Ag(110). J Vac Sci Technol 20:882

    Article  Google Scholar 

  69. Ertl G (1990) Oscillatory catalytic reactions at single-crystal surfaces. Adv Catal 37:213

    Article  CAS  Google Scholar 

  70. Cassidy TJ, Allen MD, Li Y, Bowker M (1993) From surface science to catalysis – surface explosions observed on Rh crystals and supported catalysts. Catal Lett 21:321

    Article  CAS  Google Scholar 

  71. Li YX, Bowker M (1993) Acetic-acid on Rh(110) – the stabilization and autocatalytic decomposition of acetate. J Catal 142:630

    Article  CAS  Google Scholar 

  72. Aas N, Bowker M (1993) Adsorption and autocatalytic decomposition of acetic-acid on Pd(110). J Chem Soc Faraday Trans 89:1249

    Google Scholar 

  73. Li YX, Bowker M (1993) Acetate formation, stabilization and surface explosion on Rh(111). Surf Sci 285:219

    Article  CAS  Google Scholar 

  74. Bowker M, Cassidy TJ, Allen MD, Li Y (1994) Surface explosions of acetate intermediates on Rh crystals and catalysts. Surf Sci 309:143

    Article  Google Scholar 

  75. Bowker M, Morgan C, Couves J (2004) Acetic acid adsorption and decomposition on Pd(110). Surf Sci 555:145

    Article  CAS  Google Scholar 

  76. Madix RJ, Gland JL, Mitchell GE, Sexton BA (1983) Identification of the intermediates in the dehydration of formic-acid on Ni(110) by high-resolution electron-energy loss vibrational spectroscopy. Surf Sci 125:481

    Article  CAS  Google Scholar 

  77. Nowicki M, Emundts A, Werner J, Pirug G, Bonzel HP (2000) X-ray photoelectron diffraction study of a long-range-ordered acetate layer on Ni(110). Surf Rev Lett 7:25

    CAS  Google Scholar 

  78. Feidenhansl R, Grey F, Nielsen M, Besenbacher F, Jensen F, Laegsgaard E, Stensgaard I, Jacobsen KW, Nørskov JK, Johnson RL (1990) Oxygen-chemisorption on Cu(110) – a model for the C(6 × 2) structure. Phys Rev Lett 65:2027

    Article  CAS  Google Scholar 

  79. Jensen F, Besenbacher F, Laegsgaard E, Stensgaard I (1991) Oxidation of Cu(111) – 2 new oxygen induced reconstructions. Surf Sci 259:L774

    Article  CAS  Google Scholar 

  80. Hashizume T, Taniguchi M, Motai K, Lu H, Tanaka K, Sakurai T (1992) Scanning tunneling microscopy of oxygen-adsorption on the Ag(110) surface. Surf Sci 266:282

    Article  CAS  Google Scholar 

  81. Dorenbos G, Boerma DO (1993) The structure of the Ag(110)-c(6 × 2)O surface determined with LEIS. Surf Sci 287:443

    Article  Google Scholar 

  82. Costina I, Schmid M, Schiechl H, Gajdos M, Stierle A, Kumaragurubaran S, Hafner J, Dosch H, Varga P (2006) Combined STM, LEED and DFT study of Ag(100) exposed to oxygen near atmospheric pressures. Surf Sci 600:617

    Article  CAS  Google Scholar 

  83. Okazawa T, Nishizawa T, Nishimura T, Kido Y (2007) Oxidation kinetics for Ni(111) and the structure of the oxide layers. Phys Rev B 75:033413

    Article  Google Scholar 

  84. Tanaka H, Yoshinobu J, Kawai M (1995) Oxygen-induced reconstruction of the Pd(110) surface – an STM study. Surf Sci 327:L505

    Article  CAS  Google Scholar 

  85. Bennett RA, Poulston S, Jones IZ, Bowker M (1998) High-temperature scanning tunnelling microscopy studies of oxygen-induced reconstructions of Pd(110). Surf Sci 401:72

    Article  CAS  Google Scholar 

  86. Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88:246103

    Article  CAS  Google Scholar 

  87. Helveg S, Li WX, Bartelt NC, Horch S, Laegsgaard E, Hammer B, Besenbacher F (2007) Role of surface elastic relaxations in an O-induced nanopattern on Pt(110)-(1 × 2). Phys Rev Lett 98:115501

    Article  CAS  Google Scholar 

  88. Helveg S, Lorensen HT, Horch S, Laegsgaard E, Stensgaard I, Jacobsen KW, Nørskov JK, Besenbacher F (1999) Oxygen adsorption on Pt(110)-(1 × 2): New high-coverage structures. Surf Sci 430:L533

    Article  CAS  Google Scholar 

  89. Dri C, Africh C, Esch F, Comelli G, Dubay O, Kohler L, Mittendorfer F, Kresse G, Dudin P, Kiskinova M (2006) Initial oxidation of the Rh(110) surface: Ordered adsorption and surface oxide structures. J Chem Phys 125:094701

    Article  CAS  Google Scholar 

  90. Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71:115442

    Article  Google Scholar 

  91. Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92:126102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of the National Science Foundation through grant NSF CHE 9820703 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Madix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhou, L., Madix, R.J. (2010). The Incorporation of Added Metal Atoms into Structures of Reaction Intermediates on Catalytic Metal Surfaces. In: Rioux, R. (eds) Model Systems in Catalysis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-98049-2_11

Download citation

Publish with us

Policies and ethics