The Incorporation of Added Metal Atoms into Structures of Reaction Intermediates on Catalytic Metal Surfaces



In this chapter, we review the dynamic nature of catalytic metal surfaces and the effects of metal incorporation into surface reaction intermediates on their reactivity. Scanning tunneling microscopy allows the direct observation of surface reconstruction and dynamic reorganization of surfaces during adsorption, desorption, and surface reaction, and therefore, provides a powerful tool to relate the surface structures of adsorbed layers to reactivity when combined with quantitative temperature-programmed reaction spectroscopy, X-ray photoelectron spectroscopy and other tools. The incorporation of added metal atoms to the structure of adsorbates and reaction intermediates is a general surface phenomenon not restricted to more open, higher free energy single crystal planes, but also occurring on close-packed surfaces of low free energy. Metal atom incorporation into the surface oxide appears to be a guide to the possibility of incorporation of metal atoms into the structure of other intermediates. Added metal atoms can stabilize the structures of reaction intermediates and play an important role in their surface reactions. These observations dictate that the participation of added metal atoms be considered as a paradigm in metal catalyzed reactions, significantly affecting the theoretical treatment of these processes.


Scanning Tunneling Microscopy Scanning Tunneling Microscopy Image Scanning Tunneling Microscopy Study Added Metal Atom Autocatalytic Decomposition 



Support of the National Science Foundation through grant NSF CHE 9820703 is gratefully acknowledged.


  1. 1.
    Langmuir I (1915) Chemical reactions at low pressures. J Am Chem Soc 37:1139CrossRefGoogle Scholar
  2. 2.
    Langmuir I (1915) A theory of adsorption. Phys Rev 6:79CrossRefGoogle Scholar
  3. 3.
    Davisson C, Germer LH (1927) Diffraction of electrons by a crystal of nickel. Phys Rev 30:705CrossRefGoogle Scholar
  4. 4.
    Vanhove MA, Somorjai GA (1994) Adsorption and adsorbate-induced restructuring – a LEED perspective. Surf Sci 300:487CrossRefGoogle Scholar
  5. 5.
    Barker RA, Estrup PJ (1978) Hydrogen on tungsten(100) – adsorbate-induced surface reconstruction. Phys Rev Lett 41:1307CrossRefGoogle Scholar
  6. 6.
    Engel T, Rieder KH (1981) A molecular-beam diffraction study of H2 adsorption on Ni(110). Surf Sci 109:140CrossRefGoogle Scholar
  7. 7.
    Shih HD, Jona F, Jepsen DW, Marcus PM (1981) Metal-surface reconstruction induced by adsorbate – Fe(110)-p(2 × 2)-S. Phys Rev Lett 46:731CrossRefGoogle Scholar
  8. 8.
    Somorjai GA (1991) The flexible surface – correlation between reactivity and restructuring ability. Langmuir 7:3176CrossRefGoogle Scholar
  9. 9.
    Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726Google Scholar
  10. 10.
    Guo XC, Madix RJ (2003) Real-time observation of surface reactivity and mobility with scanning tunneling microscopy. Acc Chem Res 36:471CrossRefGoogle Scholar
  11. 11.
    Ertl G (1967) Untersuchung von Oberflachenreaktionen Mittels Beugung Langsamer Elktronen (LEED) I. Wechselwirkung von O2 und N2O mit (110)-(111)-und (100)-Kupfer–Oberflachen. Surf Sci 6:208CrossRefGoogle Scholar
  12. 12.
    Coulman DJ, Wintterlin J, Behm RJ, Ertl G (1990) Novel mechanism for the formation of chemisorption phases – the (2 × 1)O-Cu(110) added-row reconstruction. Phys Rev Lett 64:1761CrossRefGoogle Scholar
  13. 13.
    Besenbacher F, Nørskov JK (1993) Oxygen-chemisorption on metal-surfaces – general trends for Cu, Ni and Ag. Prog Surf Sci 44:5CrossRefGoogle Scholar
  14. 14.
    Besenbacher F, Stensgaard I, Ruan L, Nørskov JK, Jacobsen KW (1992) Chemisorption of H, O, and S on Ni(110) – general trends. Surf Sci 272:334CrossRefGoogle Scholar
  15. 15.
    Alemozafar AR, Madix RJ (2004) Two-dimensional condensation anisotropic crystallization: H2/Ni(110). Surf Sci 557:231CrossRefGoogle Scholar
  16. 16.
    Leibsle FM, Francis SM, Davis R, Xiang N, Haq S, Bowker M (1994) Scanning-tunneling-microscopy studies of formaldehyde synthesis on Cu(110). Phys Rev Lett 72:2569CrossRefGoogle Scholar
  17. 17.
    Haq S, Leibsle FM (1997) Formic acid oxidation on Cu(110) surfaces as studied by STM: Reaction trends and surface structure. Surf Sci 375:81CrossRefGoogle Scholar
  18. 18.
    Alemozafar AR, Guo XC, Madix RJ (2003) Topographic nano-restructuring: Sulfur dioxide adsorption on Cu(110). Surf Sci 524:L84CrossRefGoogle Scholar
  19. 19.
    Guo XC, Madix RJ (2004) Determination of metal atoms incorporated in molecular intermediates: An STM study of acetylide on Ag(110). Surf Sci 564:21CrossRefGoogle Scholar
  20. 20.
    Alemozafar AR, Guo XC, Madix RJ, Hartmann N, Wang J (2002) Reaction of sulfur dioxide with Ag(110)-p(2 × 1)-O: A LEED, TPRS, and STM investigation. Surf Sci 504:223CrossRefGoogle Scholar
  21. 21.
    Alemozafar AR, Madix RJ (2004) The role of surface deconstruction in the autocatalytic decomposition of formate and acetate on Ni(110). J Phys Chem B 108:14374CrossRefGoogle Scholar
  22. 22.
    Zhou L, Gao W, Klust A, Madix RJ (2008) Stabilization of surface reaction interme­diates by added metal atoms on metal surfaces of low free energy. J Chem Phys 128(5):054703.1–054703.6Google Scholar
  23. 23.
    Falconer JL, Madix RJ (1974) Kinetics and mechanism of autocatalytic decomposition of HCOOH on clean Ni(110). Surf Sci 46:473CrossRefGoogle Scholar
  24. 24.
    Madix RJ, Falconer JL, Suszko AM (1976) Autocatalytic decomposition of acetic-acid on Ni(110). Surf Sci 54:6CrossRefGoogle Scholar
  25. 25.
    Munoz-Marquez MA, Tanner RE, Woodruff DP (2004) Surface and subsurface oxide formation on Ni(100) and Ni(111). Surf Sci 565:1CrossRefGoogle Scholar
  26. 26.
    Min BK, Deng X, Pinnaduwage D, Schalek R, Friend CM (2005) Oxygen-induced restructuring with release of gold atoms from Au(111). Phys Rev B 72:121410CrossRefGoogle Scholar
  27. 27.
    Min BK, Alemozafar AR, Biener MM, Biener J, Friend CM (2005) Reaction of Au(111) with sulfur and oxygen: Scanning tunneling microscopic study. Top Catal 36:77CrossRefGoogle Scholar
  28. 28.
    Shumbera RB, Kan HH, Weaver JF (2007) Oxidation of Pt(100)-hex-R0.7 degrees by gas-phase oxygen atoms. Surf Sci 601:235CrossRefGoogle Scholar
  29. 29.
    Shumbera RB, Kan HH, Weaver JF (2006) Adsorption of gas-phase oxygen atoms on Pt(100)-hex-R0.7 degrees: Evidence of a metastable chemisorbed phase. Surf Sci 600:2928CrossRefGoogle Scholar
  30. 30.
    Weaver JF, Chen JJ, Gerrard AL (2005) Oxidation of Pt(111) by gas-phase oxygen atoms. Surf Sci 592:83CrossRefGoogle Scholar
  31. 31.
    Guo XC, Madix RJ (2003) Imaging surface reactions at atomic resolution: A wealth of behavior on the nanoscale. J Phys Chem B 107:3105CrossRefGoogle Scholar
  32. 32.
    Jensen F, Besenbacher F, Laegsgaard E, Stensgaard I (1990) Dynamics of oxygen-induced reconstruction of Cu(100) studied by scanning tunneling microscopy. Phys Rev B 42:9206CrossRefGoogle Scholar
  33. 33.
    Haase O, Koch R, Borbonus M, Rieder KH (1991) Role of regular steps on the formation of missing-row reconstructions – oxygen-chemisorption on Ni(771). Phys Rev Lett 66:1725CrossRefGoogle Scholar
  34. 34.
    Zheng G, Altman EI (2002) The oxidation mechanism of Pd(100). Surf Sci 504:253CrossRefGoogle Scholar
  35. 35.
    Orent TW, Bader SD (1982) LEED and ELS study of the initial oxidation of Pd(100). Surf Sci 115:323CrossRefGoogle Scholar
  36. 36.
    Todorova M, Lundgren E, Blum V, Mikkelsen A, Gray S, Gustafson J, Borg M, Rogal J, Reuter K, Andersen JN, Scheffler M (2003) The Pd(100)-(root 5 × root 5)R27 degrees-O surface oxide revisited. Surf Sci 541:101CrossRefGoogle Scholar
  37. 37.
    Kostelnik P, Seriani N, Kresse G, Mikkelsen A, Lundgren E, Blum V, Sikola T, Varga P, Schmid M (2007) The Pd (100)-(root 5 × root 5)R27 degrees-O surface oxide: A LEED, DFT and STM study. Surf Sci 601:1574CrossRefGoogle Scholar
  38. 38.
    Michaelides A, Reuter K, Scheffler M (2005) When seeing is not believing: Oxygen on Ag(111), a simple adsorption system? J Vac Sci Technol A 23:1487CrossRefGoogle Scholar
  39. 39.
    Carlisle CI, King DA, Bocquet ML, Cerda J, Sautet P (2000) Imaging the surface and the interface atoms of an oxide film on Ag{111} by scanning tunneling microscopy: Experiment and theory. Phys Rev Lett 84:3899CrossRefGoogle Scholar
  40. 40.
    Schmid M, Reicho A, Stierle A, Costina I, Klikovits J, Kostelnik P, Dubay O, Kresse G, Gustafson J, Lundgren E, Andersen JN, Dosch H, Varga P (2006) Structure of Ag(111)-p(4 × 4)-O: No silver oxide. Phys Rev Lett 96:146102CrossRefGoogle Scholar
  41. 41.
    Schnadt J, Michaelides A, Knudsen J, Vang RT, Reuter K, Laegsgaard E, Scheffler M, Besenbacher F (2006) Revisiting the structure of the p(4 × 4) surface oxide on Ag(111). Phys Rev Lett 96:146101CrossRefGoogle Scholar
  42. 42.
    Klust A, Madix RJ (2007) Mesoscopic restructuring and mass transport of metal atoms during reduction of the Ag(111)-p(4 × 4)-O surface with CO. J Chem Phys 126:084707CrossRefGoogle Scholar
  43. 43.
    Nielsen LP, Besenbacher F, Laegsgaard E, Stensgaard I (1991) Nucleation and growth of a H-induced reconstruction of Ni(110). Phys Rev B 44:13156CrossRefGoogle Scholar
  44. 44.
    Osterlund L, Rasmussen PB, Thostrup P, Laegsgaard E, Stensgaard I, Besenbacher F (2001) Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys Rev Lett 86:460CrossRefGoogle Scholar
  45. 45.
    Yoshinobu J, Tanaka H, Kawai M (1995) Elucidation of hydrogen-induced (1 × 2) reconstructed structures on Pd(110) from 100 K to 300 K by scanning-tunneling-microscopy. Phys Rev B 51:4529CrossRefGoogle Scholar
  46. 46.
    Klink C, Olesen L, Besenbacher F, Stensgaard I, Laegsgaard E, Lang ND (1993) Interaction of C with Ni(100) – atom-resolved studies of the clock reconstruction. Phys Rev Lett 71:4350CrossRefGoogle Scholar
  47. 47.
    Klink C, Stensgaard I, Besenbacher F, Laegsgaard E (1995) An STM study of carbon-induced structures on Ni(111) – evidence for a carbidic-phase clock reconstruction. Surf Sci 342:250CrossRefGoogle Scholar
  48. 48.
    Klink C, Stensgaard I, Besenbacher F, Laegsgaard E (1996) Carbidic carbon on Ni(110): An STM study. Surf Sci 360:171CrossRefGoogle Scholar
  49. 49.
    Niehus H, Spitzl R, Besocke K, Comsa G (1991) N-induced (2x3) reconstruction of Cu(110) – evidence for long-range, highly directional interaction between Cu–N–Cu bonds. Phys Rev B 43:12619CrossRefGoogle Scholar
  50. 50.
    Leibsle FM (1993) A scanning-tunneling-microscopy study of the (2 × 2) P4g nitrogen-induced surface reconstruction on Ni(100). Surf Sci 297:98CrossRefGoogle Scholar
  51. 51.
    Murray PW, Leibsle FM, Thornton G, Bowker M, Dhanak VR, Baraldi A, Kiskinova M, Rosei R (1994) Nitrogen-induced reconstruction on Rh(110) – effect of oxygen on the growth and ordering of Rh–N chains. Surf Sci 304:48CrossRefGoogle Scholar
  52. 52.
    Mullins DR, Huntley DR, Overbury SH (1995) The Nature of the sulfur induced surface reconstruction on Ni(111). Surf Sci 323:L287CrossRefGoogle Scholar
  53. 53.
    Foss M, Feidenhansl R, Nielsen M, Findeisen E, Buslaps T, Johnson RL, Besenbacher F, Stensgaard I (1993) X-ray-diffraction investigation of the sulfur induced 4 × 1 reconstruction of Ni(110). Surf Sci 296:283CrossRefGoogle Scholar
  54. 54.
    Batteas JD, Dunphy JC, Somorjai GA, Salmeron M (1996) Coadsorbate induced reconstruction of a stepped Pt(111) surface by sulfur and CO: A novel surface restructuring mechanism observed by scanning tunneling microscopy. Phys Rev Lett 77:534CrossRefGoogle Scholar
  55. 55.
    Rieder KH, Stocker W (1985) The coverage-dependent ordering of chemisorbed hydrogen on the (110) surface of nickel. Surf Sci 164:55CrossRefGoogle Scholar
  56. 56.
    Christmann K, Chehab F, Penka V, Ertl G (1985) Surface reconstruction and surface explosion phenomena in the nickel (110) hydrogen system. Surf Sci 152:356CrossRefGoogle Scholar
  57. 57.
    Voigtlander B, Lehwald S, Ibach H (1989) Hydrogen adsorption and the adsorbate-induced Ni(110) reconstruction – an EELS study. Surf Sci 208:113CrossRefGoogle Scholar
  58. 58.
    Rieder KH (1983) Low-coverage ordered phases of hydrogen on Ni(110). Phys Rev B 27:7799CrossRefGoogle Scholar
  59. 59.
    Guo XC, Madix RJ (2002) Structural and morphological changes accompanying the reaction of ammonia with Ag(110)-p(2 × 1)-O: An STM study. Surf Sci 501:37CrossRefGoogle Scholar
  60. 60.
    Guo XC, Madix RJ (2002) Microscopic studies of NO2 on Ag(110)-p(2 × 1)-O and reactivity of surface nitrate. Surf Sci 496:39CrossRefGoogle Scholar
  61. 61.
    Alemozafar AR, Guo XC, Madix RJ (2002) Adsorption and reaction of sulfur dioxide with Cu(110) and Cu(110)-p(2 × 1)-O. J Chem Phys 116:4698CrossRefGoogle Scholar
  62. 62.
    Alemozafar AR, Madix RJ (2005) The adsorption of and reaction of NO2 on Ag(111)-p(4 × 4)-O and formation of surface nitrate. Surf Sci 587:193CrossRefGoogle Scholar
  63. 63.
    Alemozafar AR, Madix RJ (2005) Surface reorganization accompanying the formation of sulfite and sulfate by reaction of sulfur dioxide with oxygen on Ag(111). J Chem Phys 122:214718CrossRefGoogle Scholar
  64. 64.
    Carley AF, Davies PR, Jones RV, Harikumar KR, Kulkarni GU, Roberts MW (2000) The structure of sulfur adlayers at Cu(110) surfaces: An STM and XPS study. Surf Sci 447:39CrossRefGoogle Scholar
  65. 65.
    Outka DA, Madix RJ, Fisher GB, Dimaggio C (1986) Oxidation of sulfur-dioxide on Ag(110) – vibrational study of the structure of intermediate complexes formed. J Phys Chem 90:4051CrossRefGoogle Scholar
  66. 66.
    Outka DA, Madix RJ, Fisher GB, Dimaggio CL (1986) Vibrational spectroscopy of sulfur-dioxide on the Ag(110) surface – comparison to inorganic complexes. Langmuir 2:406CrossRefGoogle Scholar
  67. 67.
    Outka DA, Madix RJ (1984) Sulfur-dioxide adsorption and reaction with atomic oxygen on the Ag(110) surface. Surf Sci 137:242CrossRefGoogle Scholar
  68. 68.
    Outka DA, Madix RJ (1982) The effect of atomic oxygen on the interaction of SO2 with Ag(110). J Vac Sci Technol 20:882CrossRefGoogle Scholar
  69. 69.
    Ertl G (1990) Oscillatory catalytic reactions at single-crystal surfaces. Adv Catal 37:213CrossRefGoogle Scholar
  70. 70.
    Cassidy TJ, Allen MD, Li Y, Bowker M (1993) From surface science to catalysis – surface explosions observed on Rh crystals and supported catalysts. Catal Lett 21:321CrossRefGoogle Scholar
  71. 71.
    Li YX, Bowker M (1993) Acetic-acid on Rh(110) – the stabilization and autocatalytic decomposition of acetate. J Catal 142:630CrossRefGoogle Scholar
  72. 72.
    Aas N, Bowker M (1993) Adsorption and autocatalytic decomposition of acetic-acid on Pd(110). J Chem Soc Faraday Trans 89:1249Google Scholar
  73. 73.
    Li YX, Bowker M (1993) Acetate formation, stabilization and surface explosion on Rh(111). Surf Sci 285:219CrossRefGoogle Scholar
  74. 74.
    Bowker M, Cassidy TJ, Allen MD, Li Y (1994) Surface explosions of acetate intermediates on Rh crystals and catalysts. Surf Sci 309:143CrossRefGoogle Scholar
  75. 75.
    Bowker M, Morgan C, Couves J (2004) Acetic acid adsorption and decomposition on Pd(110). Surf Sci 555:145CrossRefGoogle Scholar
  76. 76.
    Madix RJ, Gland JL, Mitchell GE, Sexton BA (1983) Identification of the intermediates in the dehydration of formic-acid on Ni(110) by high-resolution electron-energy loss vibrational spectroscopy. Surf Sci 125:481CrossRefGoogle Scholar
  77. 77.
    Nowicki M, Emundts A, Werner J, Pirug G, Bonzel HP (2000) X-ray photoelectron diffraction study of a long-range-ordered acetate layer on Ni(110). Surf Rev Lett 7:25Google Scholar
  78. 78.
    Feidenhansl R, Grey F, Nielsen M, Besenbacher F, Jensen F, Laegsgaard E, Stensgaard I, Jacobsen KW, Nørskov JK, Johnson RL (1990) Oxygen-chemisorption on Cu(110) – a model for the C(6 × 2) structure. Phys Rev Lett 65:2027CrossRefGoogle Scholar
  79. 79.
    Jensen F, Besenbacher F, Laegsgaard E, Stensgaard I (1991) Oxidation of Cu(111) – 2 new oxygen induced reconstructions. Surf Sci 259:L774CrossRefGoogle Scholar
  80. 80.
    Hashizume T, Taniguchi M, Motai K, Lu H, Tanaka K, Sakurai T (1992) Scanning tunneling microscopy of oxygen-adsorption on the Ag(110) surface. Surf Sci 266:282CrossRefGoogle Scholar
  81. 81.
    Dorenbos G, Boerma DO (1993) The structure of the Ag(110)-c(6 × 2)O surface determined with LEIS. Surf Sci 287:443CrossRefGoogle Scholar
  82. 82.
    Costina I, Schmid M, Schiechl H, Gajdos M, Stierle A, Kumaragurubaran S, Hafner J, Dosch H, Varga P (2006) Combined STM, LEED and DFT study of Ag(100) exposed to oxygen near atmospheric pressures. Surf Sci 600:617CrossRefGoogle Scholar
  83. 83.
    Okazawa T, Nishizawa T, Nishimura T, Kido Y (2007) Oxidation kinetics for Ni(111) and the structure of the oxide layers. Phys Rev B 75:033413CrossRefGoogle Scholar
  84. 84.
    Tanaka H, Yoshinobu J, Kawai M (1995) Oxygen-induced reconstruction of the Pd(110) surface – an STM study. Surf Sci 327:L505CrossRefGoogle Scholar
  85. 85.
    Bennett RA, Poulston S, Jones IZ, Bowker M (1998) High-temperature scanning tunnelling microscopy studies of oxygen-induced reconstructions of Pd(110). Surf Sci 401:72CrossRefGoogle Scholar
  86. 86.
    Lundgren E, Kresse G, Klein C, Borg M, Andersen JN, De Santis M, Gauthier Y, Konvicka C, Schmid M, Varga P (2002) Two-dimensional oxide on Pd(111). Phys Rev Lett 88:246103CrossRefGoogle Scholar
  87. 87.
    Helveg S, Li WX, Bartelt NC, Horch S, Laegsgaard E, Hammer B, Besenbacher F (2007) Role of surface elastic relaxations in an O-induced nanopattern on Pt(110)-(1 × 2). Phys Rev Lett 98:115501CrossRefGoogle Scholar
  88. 88.
    Helveg S, Lorensen HT, Horch S, Laegsgaard E, Stensgaard I, Jacobsen KW, Nørskov JK, Besenbacher F (1999) Oxygen adsorption on Pt(110)-(1 × 2): New high-coverage structures. Surf Sci 430:L533CrossRefGoogle Scholar
  89. 89.
    Dri C, Africh C, Esch F, Comelli G, Dubay O, Kohler L, Mittendorfer F, Kresse G, Dudin P, Kiskinova M (2006) Initial oxidation of the Rh(110) surface: Ordered adsorption and surface oxide structures. J Chem Phys 125:094701CrossRefGoogle Scholar
  90. 90.
    Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71:115442CrossRefGoogle Scholar
  91. 91.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92:126102CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Engineering and Applied Sciences, Harvard UniversityCambridgeUSA

Personalised recommendations