Surface Femtochemistry



A challenging task in surface science is to unravel the dynamics of molecules on surfaces associated with, for example, surface molecular motion and (bimolecular) reactions. As these processes typically take place on femtosecond time scales, ultrafast lasers must be used in these studies. We demonstrate two complementary approaches to study these ultrafast molecular dynamics at metal surfaces. In the first, the molecules are studied after desorbing from the surface initiated by a laser pulse using the so called time-of-flight technique. In the second approach, molecules are studied in real time during their diffusion over the surface by using surface-specific pump-probe spectroscopy.


Femtosecond Laser Pump Pulse Stretch Vibration Coupling Time Step Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is part of the research program of the “Stichting voor Fundamenteel Onderzoek der Materie (FOM),” which is financially supported by the “Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO).” We are grateful to A.W. Kleyn, A. Eichler, M. Persson, M. Forsblom, H. Ueba, and M. Wolf for their help, many useful discussions, and comments.


  1. 1.
    Backus EHG, Eichler A, Kleyn AW, Bonn M (2005) Real-time observation of molecular motion on a surface. Science 310:1790CrossRefGoogle Scholar
  2. 2.
    Backus EHG, Forsblom M, Persson M, Bonn M (2007) Highly efficient ultrafast energy transfer into molecules at surface step sites. J Phys Chem C 111:6149CrossRefGoogle Scholar
  3. 3.
    Bonn M, Kleyn AW, Kroes GJ (2002) Real time chemical dynamics at surfaces. Surf Sci 500:475CrossRefGoogle Scholar
  4. 4.
    Frischkorn C, Wolf M (2006) Femtochemistry at metal surfaces: Nonadiabatic reaction dynamics. Chem Rev 106:4207CrossRefGoogle Scholar
  5. 5.
    Petek H, Weida MJ, Nagano H, Ogawa S (2000) Real-time observation of adsorbate atom motion above a metal surface. Science 288:1402CrossRefGoogle Scholar
  6. 6.
    Bauer M, Lei C, Read K, Tobey R, Gland J, Murnane MM, Kapteyn HC (2001) Direct observation of surface chemistry using ultrafast soft-X-ray pulses. Phys Rev Lett 87:025501CrossRefGoogle Scholar
  7. 7.
    Denzler DN, Frischkorn C, Hess C, Wolf M, Ertl G (2003) Electronic excitation and dynamic promotion of a surface reaction. Phys Rev Lett 91:226102CrossRefGoogle Scholar
  8. 8.
    Bartels L, Wang F, Möller D, Knoesel E, Heinz TF (2004) Real-space observation of molecular motion induced by femtosecond laser pulses. Science 305:648CrossRefGoogle Scholar
  9. 9.
    Fournier F, Zheng W, Carrez S, Dubost H, Bourguignon B (2004) Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111). J Chem Phys 121:4839CrossRefGoogle Scholar
  10. 10.
    Stépán K, Güdde J, Höfer U (2005) Time-resolved measurement of surface diffusion induced by femtosecond laser pulses. Phys Rev Lett 94:236103CrossRefGoogle Scholar
  11. 11.
    Lane IM, King DA, Liu ZP, Arnolds H (2006) Real-time observation of nonadiabatic surface dynamics: The first picosecond in the dissociation of NO on iridium. Phys Rev Lett 97:186105CrossRefGoogle Scholar
  12. 12.
    Funk S, Bonn M, Denzler DN, Hess C, Wolf M, Ertl G (2000) Desorption of CO from Ru(001) induced by near-infrared femtosecond laser pulses. J Chem Phys 112:9888CrossRefGoogle Scholar
  13. 13.
    Struck LM, Richter LJ, Buntin SA, Cavanagh RR, Stephenson JC (1996) Femtosecond laser-induced desorption of CO from Cu(100): Comparison of theory and experiment. Phys Rev Lett 77:4576CrossRefGoogle Scholar
  14. 14.
    Bonn M, Hess C, Funk S, Miners JH, Persson BNJ, Wolf M, Ertl G (2000) Femtosecond surface vibrational spectroscopy of CO adsorbed on Ru(001) during desorption. Phys Rev Lett 84:4653CrossRefGoogle Scholar
  15. 15.
    Lisowski M, Loukakos PA, Bovensiepen U, Stähler J, Gahl C, Wolf M (2004) Ultra-fast dynamics of electron thermalization, cooling and transport effects in Ru(001). Appl Phys A 78:165CrossRefGoogle Scholar
  16. 16.
    Bonn M, Funk S, Hess C, Denzler DN, Stampfl C, Scheffler M, Wolf M, Ertl G (1999) Phonon- versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285:1042CrossRefGoogle Scholar
  17. 17.
    Zambelli T, Wintterlin J, Trost J, Ertl G (1996) Identification of the “active sites” of a surface-catalyzed reaction. Science 273:1688CrossRefGoogle Scholar
  18. 18.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814CrossRefGoogle Scholar
  19. 19.
    Gambardella P, Šljivancanin Z, Hammer B, Blanc M, Kuhnke K, Kern K (2001) Oxygen dissociation at Pt Steps. Phys Rev Lett 87:056103CrossRefGoogle Scholar
  20. 20.
    Backus EHG, Eichler A, Grecea ML, Kleyn AW, Bonn M (2004) Adsorption and dissociation of NO on stepped Pt(533). J Chem Phys 121:7946CrossRefGoogle Scholar
  21. 21.
    Backus EHG, Bonn M (2005) A quantitative comparison between reflection absorption infrared and sum-frequency generation spectroscopy. Chem Phys Lett 412:152CrossRefGoogle Scholar
  22. 22.
    Xu J, Yates JT Jr (1995) Terrace width effect on adsorbate vibrations: A comparison of Pt(335) and Pt(112) for chemisorption of CO. Surf Sci 327:193CrossRefGoogle Scholar
  23. 23.
    Wang H, Tobin RG, DiMaggio CL, Fisher GB, Lambert DK (1997) Reactions of N and NO on Pt(533). J Chem Phys 107:9569CrossRefGoogle Scholar
  24. 24.
    Lambert DK, Tobin RG (1990) CO on Pt(335): Vibrational Stark effect, mode coupling, and local field effects on a stepped surface. Surf Sci 232:149CrossRefGoogle Scholar
  25. 25.
    Hasselbrink E (1995) In: Dai H-L, Ho W (eds) Laser spectroscopy and photochemistry on metal surfaces Part II, World Scientific Publishing, SingaporeGoogle Scholar
  26. 26.
    Zimmerman FM, Ho W (1995) State resolved studies of photochemical dynamics at surfaces. Surf Sci Rep 22:127CrossRefGoogle Scholar
  27. 27.
    Grecea ML, Backus EHG, Riedmüller B, Eichler A, Kleyn AW, Bonn M (2004) The interaction of water with the Pt(533) surface. J Phys Chem B 108:12575CrossRefGoogle Scholar
  28. 28.
    van der Ham EWM, Vrehen QHF, Eliel ER (1996) High-resolution sum-frequency spectra using broadband laser sources. Surf Sci 368:96CrossRefGoogle Scholar
  29. 29.
    Richter LJ, Petralli-Mallow TP, Stephenson JC (1998) Vibrationally resolved sum-frequency generation with broad-bandwidth infrared pulses. Opt Lett 23:1594CrossRefGoogle Scholar
  30. 30.
    Kubota J, Domen K (2007) Study of the dynamics of surface molecules by time-resolved sum-frequency generation spectroscopy. Anal Bioanal Chem 388:17CrossRefGoogle Scholar
  31. 31.
    As our experimental geometry does not allow to measure the angular distribution, we use cos4 θ (based on M. Wilde et al. (1999) Surf Sci 427–428:27, and references therein) to estimate the yield at 0°Google Scholar
  32. 32.
    Brandbyge M, Hedegård P, Heinz TF, Misewich JA, Newns DM (1995) Electronically driven adsorbate excitation mechanism in femtosecond-pulse laser desorption. Phys Rev B 52:6042CrossRefGoogle Scholar
  33. 33.
    For the strong coupling observed here, the reaction rate follows the electronic transient temperature quite closely, resulting in a relative large error in the coupling timeGoogle Scholar
  34. 34.
    Lane IM, Liu Z-P, King DA, Arnolds H (2007) Ultrafast vibrational dynamics of NO and CO adsorbed on an iridium surface. J Phys Chem C 111:14198CrossRefGoogle Scholar
  35. 35.
    Szymanski P, Harris AL, Camillone N III (2007) Adsorption-state-dependent subpicosecond photoinduced desorption dynamics. J Chem Phys 126:214709CrossRefGoogle Scholar
  36. 36.
    Szymanski P, Harris AL, Camillone N III (2007) Temperature-dependent electron-mediated coupling in subpicosecond photoinduced desorption. Surf Sci 601:3335CrossRefGoogle Scholar
  37. 37.
    It should be noted that the extracted electron coupling times for NO are smaller than the inverse mode frequency of the low-frequency modes. This is unphysical, as energy transfer into the low-frequency modes cannot occur faster than the motion associated with the modes. Although the absolute values for the friction coefficient obtained with this simple one-dimensional friction model may have limited meaning, the relative difference between step and terrace coefficient clearly indicates a ∼3-fold stronger coupling of the laser-heated electrons to the adsorbate at the steps relative to the terracesGoogle Scholar
  38. 38.
    Dose V (1985) Momentum-resolved inverse photoemission. Surf Sci Rep 5:337CrossRefGoogle Scholar
  39. 39.
    Springer C, Head-Gordon M, Tully JC (1994) Simulations of femtosecond laser-induced desorption of CO from Cu(100). Surf Sci 320:L57CrossRefGoogle Scholar
  40. 40.
    Tully JC, Gomez M (1993) Electronic and phonon mechanisms of vibrational relaxation: CO on Cu(100). J Vac Sci Technol A 11:1914CrossRefGoogle Scholar
  41. 41.
    Luntz AC, Persson M, Wagner S, Frischkorn C, Wolf M (2006) Femtosecond laser induced associative desorption of H2 from Ru(0001): Comparison of “first principles” theory with experiment. J Chem Phys 124:244702CrossRefGoogle Scholar
  42. 42.
    Liu ZP, Hu P (2003) General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J Am Chem Soc 125:1958CrossRefGoogle Scholar
  43. 43.
    Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Nørskov JK (2005) Ammonia synthesis from first-principles calculations. Science 307:555CrossRefGoogle Scholar
  44. 44.
    Buatier F, de Mongeot A, Toma AM, Lizzit S, Petaccia L, Baraldi A (2006) Carbon monoxide dissociation on Rh nanopyramids. Phys Rev Lett 97:056103CrossRefGoogle Scholar
  45. 45.
    Kitchin JR, Nørskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801CrossRefGoogle Scholar
  46. 46.
    Jänsch HJ, Xu J, Yates JT (1993) Electron stimulated surface migration of CO on Pt(533). First spectroscopic evidence for a new phenomenon, J. Chem Phys 99:721Google Scholar
  47. 47.
    Yoshinobu J, Tsukahara N, Yasui F, Mukai K, Yamashita Y (2003) Lateral displacement by transient mobility in chemisorption of CO on Pt(997). Phys Rev Lett 90:248301CrossRefGoogle Scholar
  48. 48.
    The frequency of the frustrated translational mode for the step sites is deduced from the temperature dependence of the C–O stretch mode, and is, in good agreement with previous reports [58]Google Scholar
  49. 49.
    Germer TA, Stephenson JC, Heilweil EJ, Cavanagh RR (1993) Picosecond measurement of substrate-to-adsorbate energy transfer: The frustrated translation of CO/Pt(111). J Chem Phys 98:9986CrossRefGoogle Scholar
  50. 50.
    Budde F, Heinz TF, Kalamarides A, Loy MMT, Misewich JA (1993) Vibrational distributions in desorption induced by femtosecond laser pulses: Coupling of adsorbate vibration to substrate electronic excitation. Surf Sci 283:143CrossRefGoogle Scholar
  51. 51.
    Komeda T, Kim Y, Kawai M, Persson BNJ, Ueba H (2002) Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295:2055CrossRefGoogle Scholar
  52. 52.
    Pascual JI, Lorente N, Song Z, Conrad H, Rust H-P (2003) Selectivity in vibrationally mediated single-molecule chemistry. Nature 423:525CrossRefGoogle Scholar
  53. 53.
    Ma J, Xiao X, DiNardo NJ, Loy MMT (1998) Diffusion of CO on Pt(111) studied by an optical diffraction method. Phys Rev B 58:4977CrossRefGoogle Scholar
  54. 54.
    Reutt-Robey JE, Doren DJ, Chabal YJ, Christman SB (1988) Microscopic CO diffusion on a Pt(111) surface by time-resolved infrared spectroscopy. Phys Rev Lett 61:2778CrossRefGoogle Scholar
  55. 55.
    Yates JT, Alvey MD, Dresser MJ, Henderson MA, Kiskinova M, Ramsier RD, Szabó A (1992) Direct observation of chemical bond dynamics on surfaces. Science 255:1397CrossRefGoogle Scholar
  56. 56.
    Jigato MP, Walter WK, King DA (1994) The temperature dependent effect of adsorbate hindered vibrations on NEXAFS analyses: NO on Pd{110}. Surf Sci 310:273CrossRefGoogle Scholar
  57. 57.
    Hu P, King DA, Crampin S, Lee M-H, Payne MC (1997) Ab initio diffusional potential energy surface for CO chemisorption on Pd{110} at high coverage: Coupled translation and rotation. J Chem Phys 107:8103CrossRefGoogle Scholar
  58. 58.
    Schweizer E, Persson BNJ, Tüshaus M, Hoge D, Bradshaw AM (1989) The potential energy surface, vibrational phase relaxation and the order-disorder transition in the adsorption system Pt{111}–CO. Surf Sci 213:49CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.FOM Institute for Atomic and Molecular PhysicsAmsterdamThe Netherlands

Personalised recommendations