Catalytic Chemistry of Hydrocarbon Conversion Reactions on Metallic Single Crystals



The ability to be able to follow the chemistry of adsorbates on model catalyst surfaces has, in principle, allowed us to peer inside the “black box” of a catalytic reaction and understand the pathway. Such a strategy is most simply implemented for well-ordered single crystal model catalysts for which the catalytic reaction proceeds in ultrahigh vacuum. Thus, in order to be a good model for the supported catalyst, the single crystal should catalyze the reactions with kinetics identical to those for the supported system. This chapter focuses on catalytic systems that fulfill these criteria, namely alkene and alkyne hydrogenation and acetylene cyclotrimerization on Pd(111). The surface chemistry and geometries of the reactants in ultrahigh vacuum are explored in detail allowing fundamental insights into the catalytic reaction pathways to be obtained.


Hydrogen Pressure Ultrahigh Vacuum Acetylene Molecule Ethylene Hydrogenation Reaction Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge support of this work by the United States Department of Energy under several grants and the numerous students and postdoctoral scientists who have worked on these projects.


  1. 1.
    Somorjai GA (1996) Modern surface science and surface technologies: an introduction. Chem Rev 96:1223CrossRefGoogle Scholar
  2. 2.
    Somorjai GA (1992) The frontiers of surface-structure analysis. Surf Interface Anal 19:493CrossRefGoogle Scholar
  3. 3.
    Somorjai GA, McCrea KR (2000) Sum frequency generation: Surface vibrational spectroscopy studies of catalytic reactions on metal single-crystal surfaces. Adv Catal 45:385CrossRefGoogle Scholar
  4. 4.
    Davis SM, Zaera F, Somorjai GA (1982) Surface structure and temperature dependence of light-alkane skeletal rearrangement reactions catalyzed over platinum single-crystal surfaces. J Am Chem Soc 104:7453CrossRefGoogle Scholar
  5. 5.
    Yang M, Somorjai GA (2004) Adsorption and reactions of C6 hydrocarbons at high pressures on Pt(111) single-crystal surfaces studied by sum frequency generation vibrational spectroscopy: mechanisms of isomerization and dehydrocyclization of n-hexane. J Am Chem Soc 126:7698CrossRefGoogle Scholar
  6. 6.
    Bonivardi AL, Ribeiro FH, Somorjai GA (1996) Turnover rate enhancement of reforming reactions on polycrystalline Pt-Ir foils. J Catal 160:269CrossRefGoogle Scholar
  7. 7.
    Yang M, Somorjai GA (2003) Evidence for cyclohexyl as a reactive surface intermediate during high-pressure cyclohexane catalytic reactions on Pt(111) by sum frequency generation vibrational spectroscopy. J Am Chem Soc 125:11131CrossRefGoogle Scholar
  8. 8.
    Fujikawa T, Ribeiro FH, Somorjai GA (1998) The effect of Sn on the reactions of n-hexane and cyclohexane over polycrystalline Pt foils. J Catal 178:58CrossRefGoogle Scholar
  9. 9.
    Zaera F (2002) Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective. Appl Catal A 229:75CrossRefGoogle Scholar
  10. 10.
    Tjandra S, Zaera F (1996) A surface science study of the hydrogenation and dehydrogenation steps in the interconversion of C6 cyclic hydrocarbons on Ni(100). J Catal 164:82CrossRefGoogle Scholar
  11. 11.
    Marsh AL, Somorjai GA (2005) Structure, reactivity, and mobility of carbonaceous overlayers during olefin hydrogenation on platinum and rhodium single crystal surfaces. Top Catal 34:121CrossRefGoogle Scholar
  12. 12.
    Zaera F, Somorjai GA (1984) Hydrogenation of ethylene over platinum (111) single-crystal surfaces. J Am Chem Soc 106:2288CrossRefGoogle Scholar
  13. 13.
    Kaltchev M, Thompson AW, Tysoe WT (1997) Reflection-absorption infrared spectroscopy of ethylene on palladium(111) at high pressure. Surf Sci 391:145CrossRefGoogle Scholar
  14. 14.
    Koestner RJ, Van Hove MA, Somorjai GA (1983) Molecular structure of hydrocarbon monolayers on metal surfaces. J Phys Chem 87:203CrossRefGoogle Scholar
  15. 15.
    Kesmodel LL, Dubois LH, Somorjai GA (1978) Dynamical LEED study of C2H2 and C2H4 chemisorption on Pt(111): evidence for the ethylidyne CH3-C group. Chem Phys Lett 56:267CrossRefGoogle Scholar
  16. 16.
    Cremer P, Stanners C, Neimantsverdreit J, Shen Y, Somorjai GA (1995) The conversion of di-sigma bonded ethylene to ethylidyne on Pt(111) monitored with sum-frequency generation – evidence for an ethylidene (or ethyl) intermediate. Surf Sci 328:111CrossRefGoogle Scholar
  17. 17.
    Cremer P, Somorjai GA (1995) Surface science and catalysis of ethylene hydrogenation. J Chem Soc Faraday Trans 91:3671CrossRefGoogle Scholar
  18. 18.
    Cremer P, Su X, Shen Y, Somorjai GA (1996) Ethylene hydrogenation on Pt(111) monitored in situ at high pressures using sum frequency generation. J Am Chem Soc 118:2942CrossRefGoogle Scholar
  19. 19.
    Cremer P, Su X, Shen Y, Somorjai GA (1996) The first measurement of an absolute surface concentration of reaction intermediates in ethylene hydrogenation. Catal Lett 40:143CrossRefGoogle Scholar
  20. 20.
    Beebe TP Jr, Yates JT Jr (1986) An in situ infrared spectroscopic investigation of the role of ethylidyne in the ethylene hydrogenation reaction on palladium/alumina. J Am Chem Soc 108:663CrossRefGoogle Scholar
  21. 21.
    Beebe TP Jr, Albert MR, Yates JT Jr (1986) Infrared spectroscopic observation and characterization of surface ethylidyne on supported palladium on alumina. J Catal 96:1CrossRefGoogle Scholar
  22. 22.
    Chesters MA, McCash EM (1987) Ethylidyne formation on Pt(111), studied by FT-RAIRS. Surf Sci 187:L639CrossRefGoogle Scholar
  23. 23.
    Mousin SB, Trenary M, Robota HJ (1989) Kinetics of ethylidyne formation on Pt(111) from time-dependent infrared-spectroscopy. Chem Phys Lett 154:511CrossRefGoogle Scholar
  24. 24.
    Ma Z, Zaera F (2006) Organic chemistry on solid surfaces. Surf Sci Rep 61:229CrossRefGoogle Scholar
  25. 25.
    Bent BE (1996) Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum. Chem Rev 96:1361CrossRefGoogle Scholar
  26. 26.
    Zaera F (1994) Molecular approach to the study of the mechanisms of alkyl reactions on metal surfaces. J Mol Catal 86:221CrossRefGoogle Scholar
  27. 27.
    Zaera F (1992) Preparation and reactivity of alkyl groups adsorbed on metal surfaces. Acc Chem Res 25:260CrossRefGoogle Scholar
  28. 28.
    Zaera F (1995) An organometallic guide to the chemistry of hydrocarbon moieties on transition metal surfaces. Chem Rev 95:2651CrossRefGoogle Scholar
  29. 29.
    Horiuti J, Polanyi M (1930) Exchange reactions of hydrogen on metallic catalysts. Trans Faraday Soc 30:1164CrossRefGoogle Scholar
  30. 30.
    Horiuti J (1948) Hydrogen addition on metal catalysts. Catalyst 2:1Google Scholar
  31. 31.
    Tysoe WT, Nyberg GL, Lambert RM (1983) Photoelectron spectroscopy and heterogeneous catalysis: benzene and ethylene from acetylene on Pd(111). Surf Sci 135:128CrossRefGoogle Scholar
  32. 32.
    Sesselman W, Woratschek B, Ertl G, Küppers J, Haberland H (1983) Low-temperature formation of benzene from acetylene on a Pd(111) surface. Surf Sci 130:245CrossRefGoogle Scholar
  33. 33.
    Gentle TM, Muetterties EL (1983) Acetylene, ethylene, and arene chemistry of palladium surfaces. J Phys Chem 87:2469CrossRefGoogle Scholar
  34. 34.
    Tysoe WT, Nyberg GL, Lambert RM (1983) Low temperature catalytic chemistry of the Pd(111) surface: benzene and ethylene from acetylene. J Chem Soc Chem Commun 623.Google Scholar
  35. 35.
    Avery NA (1985) Adsorption and reactivity of acetylene on a Copper (110) surface. J Am Chem Soc 107:6711CrossRefGoogle Scholar
  36. 36.
    Xu C, Peck JW, Koel BE (1993) A new catalyst for benzene production from acetylene under UHV conditions – Sn/Pt(111) surface alloys. J Am Chem Soc 115:751CrossRefGoogle Scholar
  37. 37.
    Badderley CJ, Ormerod RM, Stephenson AW, Lambert RM (1995) Surface-structure and reactivity in the cyclization of acetylene to benzene with Pd overlayers and Pd/Au surface alloys on Au(111). J Phys Chem 99:5146CrossRefGoogle Scholar
  38. 38.
    Pierce KG, Barteau MA (1993) Cyclotrimerization of alkynes on reduced TiO2(001) surfaces. J Phys Chem 115:751Google Scholar
  39. 39.
    Rucker TG, Logan MA, Muetterties EM, Somorjai GA (1986) Conversion of acetylene to benzene over palladium single-crystal surfaces. 1. The low-pressure stoichiometric and the high-pressure catalytic reactions. J Phys Chem 90:2703CrossRefGoogle Scholar
  40. 40.
    Ramirez-Cuesta A, Valladares D, Velasco A, Zgrablich G, Tysoe WT, Ormerod RM, Lambert RM (1993) Desorption of benzene from Pd(111): A simulation study. J Phys: Condens Matter 5:A137CrossRefGoogle Scholar
  41. 41.
    Hoffmann H, Zaera F, Ormerod RM, Lambert RM, Wang LP, Tysoe WT (1990) Discovery of a tilted form of benzene chemisorbed on Pd(111): A NEXAFS and photoemission investigation. Surf Sci 232:259CrossRefGoogle Scholar
  42. 42.
    Patterson CH, Lambert RM (1998) Molecular pathways in the cyclotrimerization of ethyne on palladium: Role of the C4 intermediate. J Am Chem Soc 110:6871CrossRefGoogle Scholar
  43. 43.
    Ormerod RM, Lambert RM, Hoffmann H, Zaera F, Yao JM, Saldin DK, Wang LP, Bennett DW, Tysoe WT (1993) NEXAFS identification of a catalytic reaction intermediate: C4H4 on Pd(111). Surf Sci 295:277CrossRefGoogle Scholar
  44. 44.
    Ramirez-Cuesta AJ, Zgrablich G, Tysoe WT (1995) Simulation of benzene formation from acetylene on palladium and oxygen-covered palladium surfaces. Surf Sci 340:109CrossRefGoogle Scholar
  45. 45.
    Inoue Y, Kojima I, Moriki S, Yasumori I (1976) Template effects in palladium catalysis. In: Proceedings of the sixth international congress on catalysis, vol 1, p 139Google Scholar
  46. 46.
    Abdelrehim IM, Caldwell TE, Land DP (1996) Coverage effects on the kinetics of benzene formation from acetylene on Pd(111): A laser-induced thermal desorption Fourier transform mass spectrometry investigation. J Phys Chem 100:10265CrossRefGoogle Scholar
  47. 47.
    Abdelrehim IM, Thornburg NA, Sloan JT, Caldwell TE, Land DP (1995) Kinetics and mechanism of benzene formation from acetylene on Pd(111) studied by laser-induced thermal-desorption Fourier-transform mass-spectrometry. J Am Chem Soc 117:9509CrossRefGoogle Scholar
  48. 48.
    Abdelrehim IM, Thornburg NA, Sloan JT, Land DP (1993) Benzene and thiophene formation from acetylene on sulfided Pd(111) studied by LITD FTMS. Surf Sci 298:L169CrossRefGoogle Scholar
  49. 49.
    Janssens TVW, Völkening S, Zambelli T, Winterlin J (1998) Direct observation of surface reactions of acetylene on Pd(111) with scanning tunneling microscopy. J Phys Chem 102:6251Google Scholar
  50. 50.
    Ormerod RM, Lambert RM (1990) Heterogeneously catalyzed cyclotrimerization of ethyne to benzene over supported palladium catalysts. J Chem Soc Chem Commun 20:1421CrossRefGoogle Scholar
  51. 51.
    Ormerod RM, Lambert RM, Hoffmann H, Zaera F, Wang LP, Bennett DW, Tysoe WT (1994) Room temperature chemistry of acetylene on Pd(111): formation of vinylidene. J Phys Chem 98:2134CrossRefGoogle Scholar
  52. 52.
    Ormerod RM, Lambert RM, Bennett DW, Tysoe WT (1995) Temperature programmed desorption of co-adsorbed hydrogen and acetylene on Pd(111). Surf Sci 330:1CrossRefGoogle Scholar
  53. 53.
    Zheng T, Tysoe WT, Poon HC, Saldin DK (2003) Structural determination of ordered and disordered organic molecules on a surface from the substrate diffraction spots in low energy electron diffraction: (√3×√3)R30°-C2H2 and disordered CH3OH on Pd(111). Surf Sci 543:19CrossRefGoogle Scholar
  54. 54.
    Sellers H (1990) Structures and vibrational frequencies of acetylene in 3 binding sites on the Pd(111) surface. J Phys Chem 94:8329CrossRefGoogle Scholar
  55. 55.
    Pallassana V, Neurock M, Lusvardi VS, Lerov JJ, Kragten DD, van Santen RA (2002) A density functional theory analysis of the reaction pathways and intermediates for ethylene dehydrogenation over Pd(111). J Phys Chem B 106:1659CrossRefGoogle Scholar
  56. 56.
    Clotet A, Ricart JM, Pacchioni G (1998) Bonding of vinylidene on Pd(111). J Mol Struct 458:123Google Scholar
  57. 57.
    Somorjai GA (1996) The flexible surface: new techniques for molecular level studies of time dependent changes in metal surface structure and adsorbate structure during catalytic reactions. J Mol Catal A: Chem 107:39CrossRefGoogle Scholar
  58. 58.
    Stacchiola D, Wu G, Kaltchev M, Tysoe WT (2001) Molecular beam and infrared spectroscopic studies of the thermodynamics of CO on clean and vinylidene-covered Pd(111). J Chem Phys 115:3315CrossRefGoogle Scholar
  59. 59.
    Conrad H, Ertl G, Koch J, Latta EE (1974) Adsorption of CO on Pd single crystal surfaces. Surf Sci 43:462CrossRefGoogle Scholar
  60. 60.
    Ertl G, Koch J (1970) Adsorption von CO auf einer Palladium(111)-Oberfläche. Z Naturforsch A: Phys Sci 25:1906Google Scholar
  61. 61.
    Colthup NB, Daly LH, Wiberley SE (1964) Infrared and Raman spectroscopy. Academic Press, New YorkGoogle Scholar
  62. 62.
    Ormerod RM, Lambert RM (1992) Critical ensemble required for acetylene cyclization on Pd(111) - A study of steric inhibition by coadsorbed oxygen. J Phys Chem 96:8111CrossRefGoogle Scholar
  63. 63.
    Baddeley CJ, Tikhov M, Hardacre C, Lomas JR, Lambert RM (1996) Ensemble effects in the coupling of acetylene to benzene on a bimetallic surface: a study with Pd{111}/Au. J Phys Chem 100:2189CrossRefGoogle Scholar
  64. 64.
    Beckhaus R (1997) Carbenoid complexes of electron-deficient transition metals – Syntheses of and with short-lived building blocks. Angew Chem Int Ed 36:687Google Scholar
  65. 65.
    Beckhaus R, Oster J, Ganter B, Englert U (1997) Vinyltitanium complexes containing the [2-(N,N-dimethylamino)ethyl]tetramethylcyclopentadienyl ligand Cp-*N. Generation and reactivity of the vinylidene intermediate [(Cp-*N)(Cp*)Ti=C=CH2] (Cp-*N=eta(5)-C5Me4(CH2)(2)NMe2, Cp*=eta(5)-C5Me5). Organometallics 16:3902CrossRefGoogle Scholar
  66. 66.
    Beckhaus R, Sang J, Wagner T, Ganter B (1996) Reactivity of acetylenes toward the titanocene vinylidene fragment [Cp*2Ti=C=CH2]. Formation of methylenetitanacyclobutenes and vinyltitanium acetylides. Crystal and molecular structures of Cp*2TiCR’=CR’’C=CH2 (R’=R’’=CH3; R’=SiMe(3), R’’=C6H5) and Cp*2Ti(CH=CH2)(C CPh). Organometallics 15:1176CrossRefGoogle Scholar
  67. 67.
    Levy GC, Lichter RL, Nelson GL (1980) Carbon-13 Nuclear Magnetic Resonance Spectroscopy. Wiley Interscience, New YorkGoogle Scholar
  68. 68.
    Kaltchev M, Molero H, Stacchiola D, Wu G, Blumenfeld A, Tysoe WT (1999) On the reaction pathway for the formation of benzene from acetylene catalyzed by palladium. Catal Lett 60:11CrossRefGoogle Scholar
  69. 69.
    Stacchiola D, Wu G, Molero H, Tysoe WT (2001) On the effect of hydrogen on the palladium-catalyzed formation of benzene from acetylene. Catal Lett 71:1CrossRefGoogle Scholar
  70. 70.
    Bond GC, Wells PB (1965) The hydrogenation of acetylene: II. The reaction of acetylene with hydrogen catalyzed by alumina-supported palladium. J Catal 5:65CrossRefGoogle Scholar
  71. 71.
    Bond GC, Wells PB (1965) The hydrogenation of acetylene: I. The reaction of acetylene with hydrogen catalyzed by alumina-supported platinum. J Catal 4:211CrossRefGoogle Scholar
  72. 72.
    Yasunobi T, Yasumori I (1971) Pressure jump and isotope replacement studies of acetylene hydrogenation on palladium surface. J Phys Chem 75:880CrossRefGoogle Scholar
  73. 73.
    Moses JM, Weiss AH, Matusek K, Guczi L (1984) The effect of catalyst treatment on the selective hydrogenation of acetylene over palladium/alumina. J Catal 86:417CrossRefGoogle Scholar
  74. 74.
    Gua LZ, Kho KE (1988) Kinetics of acetylene hydrogenation on palladium deposited on alumina. Kinet Catal 29:381Google Scholar
  75. 75.
    Moyes RB, Walker DW, Wells PB, Whan DA, Irvine EA (1989) An unusual form of non-Arrhenius behaviour in ethyne hydrogenation over palladium catalysts. Appl Catal 55:L5CrossRefGoogle Scholar
  76. 76.
    Adúriz HR, Bodnariuk P, Dennehy M, Grgola CE (1990) Activity and selectivity of Pd/α-Al2O3 for ethyne hydrogenation in a large excess of ethene and hydrogen. Appl Catal 58:227CrossRefGoogle Scholar
  77. 77.
    Bos ANR, Westerterp K (1978) Mechanism and kinetics of the selective hydrogenation of ethyne and ethene. Chem Eng Process 32:1Google Scholar
  78. 78.
    Bond GC (1962) Catalysis by metals. Academic Press, New YorkGoogle Scholar
  79. 79.
    Beeck O (1950) Hydrogenation catalysts. Faraday Discuss 8:118CrossRefGoogle Scholar
  80. 80.
    Bond GC, Wells PB (1964) The mechanism of the hydrogenation of unsaturated hydrocarbons on transition metal catalysts. Adv Catal 15:91CrossRefGoogle Scholar
  81. 81.
    Wang L, Soto C, Tysoe WT (1993) The kinetics of propylene metathesis catalyzed by a molybdenum (100) single crystal. J Catal 143:92CrossRefGoogle Scholar
  82. 82.
    Bartlett BF, Molero H, Tysoe WT (1997) The metathesis of propylene catalyzed by model oxides studied using a high-pressure reactor incorporated into an ultrahigh vacuum chamber. J Catal 167:470CrossRefGoogle Scholar
  83. 83.
    Wu G, Kaltchev M, Tysoe WT (1999) The kinetics and infrared spectroscopy of C1 hydrocarbons adsorbed on clean and oxygen-modified Mo(100). Surf Rev Lett 6:13CrossRefGoogle Scholar
  84. 84.
    Borodzinski A, Bond GC (2006) Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal Rev – Sci Eng 48:91CrossRefGoogle Scholar
  85. 85.
    Tysoe WT, Nyberg GL, Lambert RM (1986) Selective hydrogenation of acetylene over palladium in ultra high vacuum. J Phys Chem 90:3188CrossRefGoogle Scholar
  86. 86.
    Azad S, Kaltchev M, Stacchiola D, Wu G, Tysoe WT (2000) On the reaction pathway for the hydrogenation of acetylene and vinylidene on Pd(111). J Phys Chem B 104:3107CrossRefGoogle Scholar
  87. 87.
    Goodman DW (1966) Chemical and spectroscopic studies of metal oxide surfaces. J Vac Sci Technol A 14:1526CrossRefGoogle Scholar
  88. 88.
    Molero H, Bartlett BF, Tysoe WT (1999) The hydrogenation of acetylene catalyzed by palladium: hydrogen pressure dependence. J Catal 181:49CrossRefGoogle Scholar
  89. 89.
    Al-Ammar AS, Webb G (1978) Hydrogenation of acetylene over supported metal catalysts: Part 1 – Adsorption of [14C] Acetylene and [14C] ethylene on silica supported rhodium, iridium and palladium and alumina supported palladium. J Chem Soc Faraday Trans 74:195CrossRefGoogle Scholar
  90. 90.
    Al-Ammar AS, Webb G (1979) Hydrogenation of acetylene over supported metal catalysts: Part 3 – [14C] tracer studies of the effect of added ethylene and carbon monoxide on the reaction catalyzed by silica-supported palladium, rhodium and iridium. J Chem Soc Faraday Trans 75:1900CrossRefGoogle Scholar
  91. 91.
    McGowan WT, Kemball C, Whan DA, Scurrell MS (1977) Hydrogenation of acetylene in excess ethylene on an alumina supported palladium catalyst in static system. J Chem Soc Faraday Trans 73:632CrossRefGoogle Scholar
  92. 92.
    Margitfalvi J, Guczi L, Weiss AH (1981) Reactions of acetylene during hydrogenation on Pd black catalyst. J Catal 72:185CrossRefGoogle Scholar
  93. 93.
    Sassen NRM, Den Hartog AJ, Jongerious F, Aarts JFM, Ponec V (1989) Adsorption and reactions of ethyne – Effects of modifiers and formation of bimetallics. Faraday Discuss 87:311CrossRefGoogle Scholar
  94. 94.
    Den Hartog AJ, Deng M, Jongerious F, Ponec V (1990) Hydrogenation of acetylene over various group VIII metals – Effect of particle size and carbonaceous deposits. J Mol Catal 60:99CrossRefGoogle Scholar
  95. 95.
    Menshikov WA, Falkovitsch JG, Aerov ME (1975) Hydrogenation kinetics of acetylene on a palladium catalyst in the presence of ethylene. Kinet Catal 16:1538Google Scholar
  96. 96.
    Houzvicka J, Pestman R, Ponec V (1995) The role of carbonaceous deposits and support impurities in the selective hydrogenation of ethyne. Catal Lett 30:289CrossRefGoogle Scholar
  97. 97.
    Sarkany A, Guczi L, Weiss AH (1984) On the aging phenomena in palladium catalysed acetylene hydrogenation. Appl Catal 10:369CrossRefGoogle Scholar
  98. 98.
    LeViness S, Nair V, Weiss AH, Schay Z, Guczi L (1984) Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. J Mol Catal 25:131CrossRefGoogle Scholar
  99. 99.
    Borodzinski A (1997) A, Golebiowski, Surface heterogeneity of supported palladium catalyst for the hydrogenation of acetylene-ethylene mixtures. Langmuir 13:883CrossRefGoogle Scholar
  100. 100.
    Tysoe WT (1999) Palladium-catalyzed acetylene cyclotromerization: from ultrahigh vacuum to high-pressure catalysis. Isr J Chem 38:313Google Scholar
  101. 101.
    Stacchiola D, Calaza F, Zheng T, Tysoe WT (2005) Hydrocarbon conversion on palladium catalysts. J Mol Catal A: Chem 228:35CrossRefGoogle Scholar
  102. 102.
    Stacchiola D, Molero H, Tysoe WT (2001) Palladium-catalyzed cyclotrimerization and hydrogenation: from ultrahigh vacuum to high-pressure catalysis. Catal Today 65:3CrossRefGoogle Scholar
  103. 103.
    Zheng T, Stacchiola D, Poon HC, Saldin DK, Tysoe WT (2004) Determination of the structure of disordered overlayers of ethylene on clean and hydrogen-covered Pd(111) by low energy electron diffraction. Surf Sci 564:71CrossRefGoogle Scholar
  104. 104.
    Stacchiola D, Azad S, Burkholder L, Tysoe WT (2001) An investigation of the reaction pathway for ethylene hydrogenation on Pd(111). J Phys Chem 105:11233Google Scholar
  105. 105.
    Behm H, Christman K, Ertl G (1980) Adsorption of hydrogen on Pd(100). Surf Sci 99:320CrossRefGoogle Scholar
  106. 106.
    Conrad H, Ertl G, Latta EE (1974) Adsorption of hydrogen on palladium single crystal surfaces. Surf Sci 41:435CrossRefGoogle Scholar
  107. 107.
    Conrad H, Ertl G, Küppers J, Latta EE (1976) Ultraviolet photoelectron spectra from hydrogen adsorbed on Ni(111) and Pd(111) surfaces. Surf Sci 58:578CrossRefGoogle Scholar
  108. 108.
    Greuter F, Eberhardt W, DiNardo J, Plummer EW (1981) Bonding to Ni, Pd and Pt: An angle resolved photoemission study. J Vac Sci Technol 18:433CrossRefGoogle Scholar
  109. 109.
    Stacchiola D, Tysoe WT (2003) The effect of subsurface hydrogen on the adsorption of ethylene on Pd(111). Surf Sci 540:L600CrossRefGoogle Scholar
  110. 110.
    Molero H, Stacchiola D, Tysoe WT (2005) The kinetics of ethylene hydrogenation catalyzed by metallic palladium. Catal Lett 101:145CrossRefGoogle Scholar
  111. 111.
    Stacchiola D, Kaltchev M, Tysoe WT (2000) The adsorption and structure of CO on ethylidyne-covered Pd(111). Surf Sci 470:L32CrossRefGoogle Scholar
  112. 112.
    Stacchiola D, Tysoe WT (2002) The adsorption of ethylene on ethylidyne-covered Pd(111). Surf Sci 513:L431CrossRefGoogle Scholar
  113. 113.
    Davis S, Zaera F, Gordon BE, Somorjai GA (1985) Radiotracer and thermal desorption studies of dehydrogenation and atmospheric hydrogenation of organic fragments obtained from [14C]ethylene chemisorbed over Pt(111) surfaces. J Catal 92:240CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations