Advertisement

Iatrogenic Models of Ischemic Heart Disease

  • David R. Gross
Chapter

Abstract

Ischemic heart disease is the most common cause of heart failure in humans. Ventricular dilation, hypertrophy, biochemical alterations, and edema formation are all consequences of the poor pumping capacity of the damaged myocardium. Two very different types of ischemia are studied. Global ischemia is associated with cardiac arrest usually iatrogenic during cardiopulmonary bypass surgery or from ventricular fibrillation although during the initial period of fibrillation coronary flow increases. Regional ischemia is associated with a localized myocardial infarction. The two types of ischemia differ significantly in their biochemical and electrophysiological characteristics.1

Keywords

Leave Anterior Descend Ventricular Fibrillation Global Ischemia Regional Ischemia Proximal Leave Anterior Descend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gross DR. Animal Models in Cardiovascular Research, 2nd Revised Edition. Boston: Kluwer Academic; 1994.Google Scholar
  2. 2.
    Wolkart G, Kaber G, Kojda G, Brunner F. Role of endogenous hydrogen peroxide in cardiovascular ischaemia/reperfusion function: Studies in mouse hearts with catalase-overexpression in the vascular endothelium. Pharmacol Res. 2006;54:50–56.PubMedCrossRefGoogle Scholar
  3. 3.
    Gonon AT, Bulhak A, Broijersen A, Pernow J. Cardioprotective effect of an endothelin receptor antagonist during ischaemia/reperfusion in the severely atherosclerotic mouse heart. Br J Pharmacol. 2005;144:860–866.PubMedCrossRefGoogle Scholar
  4. 4.
    Ashton KJ, Willems L, Holmgren K, Ferreira L, Headrick JP. Age-associated shifts in cardiac gene transcription and transcriptional responses to ischemic stress. Exp Gerontol. 2006;41:189–204.PubMedCrossRefGoogle Scholar
  5. 5.
    du Toit EF, Rossouw E, Salie R, Opie LH, Lochner A. Effect of sildenafil on reperfusion function, infarct size, and cyclic nucleotide levels in the isolated rat heart model. Cardiovasc Drugs Ther. 2005;19:23–31.PubMedCrossRefGoogle Scholar
  6. 6.
    Lochner A, Genade S, Hattingh S, Marais E, Huisamen B, Moolman JA. Comparison between ischaemic and anisomycin-induced preconditioning: Role of p38 MAPK. Cardiovasc Drugs Ther. 2003;17:217–230.PubMedCrossRefGoogle Scholar
  7. 7.
    Khudairi T, Khaw BA. Preservation of ischemic myocardial function and integrity with targeted cytoskeleton-specific immunoliposomes. J Am Coll Cardiol. 2004;43:1683–1689.PubMedCrossRefGoogle Scholar
  8. 8.
    Ikizler M, Dernek S, Sevin B, Kural T. Trimetazidine improves recovery during reperfusion in isolated rat hearts after prolonged ischemia. Anadolu Kardiyol Derg. 2003;3:303–308.PubMedGoogle Scholar
  9. 9.
    Wischmeyer PE, Jayakar D, Williams U, et al. Single dose of glutamine enhances myocardial tissue metabolism, glutathione content, and improves myocardial function after ischemia-reperfusion injury. JPEN J Parenter Enteral Nutr. 2003;27:396–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Takahashi N, Ooie T, Saikawa T, Iwao T, Yoshimatsu H, Sakata T. Long-term treatment with glibenclamide increases susceptibility of streptozotocin-induced diabetic rat heart to reperfusion-induced ventricular tachycardia. Exp Biol Med (Maywood). 2003;228:1234–1238.Google Scholar
  11. 11.
    Ooie T, Takahashi N, Nawata T, et al. Ischemia-induced translocation of protein kinase C-epsilon mediates cardioprotection in the streptozotocin-induced diabetic rat. Circ J. 2003;67:955–961.PubMedCrossRefGoogle Scholar
  12. 12.
    Kramer JH, Mak IT, Phillips TM, Weglicki WB. Dietary magnesium intake influences circulating pro-inflammatory neuropeptide levels and loss of myocardial tolerance to postischemic stress. Exp Biol Med (Maywood). 2003;228:665–673.Google Scholar
  13. 13.
    Dernek S, Ikizler M, Erkasap N, et al. Cardioprotection with resveratrol pretreatment: Improved beneficial effects over standard treatment in rat hearts after global ischemia. Scand Cardiovasc J. 2004;38:245–254.PubMedCrossRefGoogle Scholar
  14. 14.
    Dyck JR, Cheng JF, Stanley WC, et al Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. 2004;94:e78–e84.PubMedCrossRefGoogle Scholar
  15. 15.
    Burgdorf C, Dendorfer A, Kurz T, et al. Role of neuronal KATP channels and extra neuronal monoamine transporter on norepinephrine overflow in a model of myocardial low flow ischemia. J Pharmacol Exp Ther. 2004;309:42–48.PubMedCrossRefGoogle Scholar
  16. 16.
    Kawabata H, Ishikawa K. Cardioprotection with pioglitazone is abolished by nitric oxide synthase inhibitor in ischemic rabbit hearts - comparison of the effects of pioglitazone and metformin. Diabetes Metab Res Rev. 2003;19:299–305.PubMedCrossRefGoogle Scholar
  17. 17.
    Gonzalez GE, Mangas F, Chauvin AD, et al. Diastolic behavior during postischemic hypercontraction phase in rabbit stunned myocardium. Medicina (B Aires). 2003;63:403–409.Google Scholar
  18. 18.
    Castella M, Buckberg GD, Saleh S, Tan Z, Ignarro LJ. A new role for cardioplegic buffering: Should acidosis or calcium accumulation be counteracted to salvage jeopardized hearts? J Thorac Cardiovasc Surg. 2003;126:1442–1448.PubMedCrossRefGoogle Scholar
  19. 19.
    Gross DR, Dewanjee MK, Zhai P, Lanzo S, Wu SM. Successful prosthetic mitral valve implantation in pigs. ASAIO J. 1997;43:M382–M386.PubMedCrossRefGoogle Scholar
  20. 20.
    Gross DR, Salley RK, Maley RH, Arden WA, Nammalwar P. Effects of internal mammary artery pedicle coronary artery bypass grafting on aortic valve leaflet positioning. J Heart Valve Dis. 1995;4:313–320.PubMedGoogle Scholar
  21. 21.
    Sparks DL, Gross DR, Hunsaker JC. Neuropathology of mitral valve prolapse in man and cardiopulmonary bypass (CPB) surgery in adolescent Yorkshire pigs. Neurobiol Aging. 2000;21:363–372.PubMedCrossRefGoogle Scholar
  22. 22.
    Borke WB, Munkeby BH, Morkrid L, Thaulow E, Saugstad OD. Resuscitation with 100% O(2) does not protect the myocardium in hypoxic newborn piglets. Arch Dis Child Fetal Neonatal Ed. 2004;89:F156–F160.PubMedCrossRefGoogle Scholar
  23. 23.
    Hearse DJ. Models and problems in the study of myocardial ischemia and tissue protection. Eur Heart J. 1983;4 Suppl C:43–48.PubMedGoogle Scholar
  24. 24.
    Verdouw PD, Wolffenbuttel BH, van der Giessen WJ. Domestic pigs in the study of myocardial ischemia. Eur Heart J. 1983;4 Suppl C:61–67.PubMedGoogle Scholar
  25. 25.
    Eckstein RW. Coronary interarterial anastomoses in young pigs and mongrel dogs. Circ Res. 1954;2:460–465.PubMedGoogle Scholar
  26. 26.
    Brooks H, Al-Sadir J, Schwartz J, Rich B, Harper P, Resnekov L. Biventricular dynamics during quantitated anteroseptal infarction in the porcine heart. Am J Cardiol. 1975;36:765–775.PubMedCrossRefGoogle Scholar
  27. 27.
    Opie LH, Bruyneel KJ, Lubbe WF. What has the baboon to offer as a model of experimental ischemia? Eur Heart J. 1983;4 Suppl C:55–60.PubMedGoogle Scholar
  28. 28.
    Gross DR. Unpublished data.Google Scholar
  29. 29.
    Khouri EM, Gregg DE. An inflatable cuff for zero determination in blood flow studies. J Appl Physiol. 1967;23:395–397.PubMedGoogle Scholar
  30. 30.
    Elzinga WE, Skinner DB. Hemodynamic characteristics of critical stenosis in canine coronary arteries. J Thorac Cardiovasc Surg. 1975;69:217–222.PubMedGoogle Scholar
  31. 31.
    Lekx KS, Prato FS, Sykes J, Wisenberg G. The partition coefficient of Gd-DTPA reflects maintained tissue viability in a canine model of chronic significant coronary stenosis. J Cardiovasc Magn Reson. 2004;6:33–42.PubMedCrossRefGoogle Scholar
  32. 32.
    Morillas P, Hernandez A, Pallares V, et al Usefulness of trimetazidine in ischemia-reperfusion lesion. experimental study in myocardial stunning model. Arch Cardiol Mex. 2004;74:262–270.PubMedGoogle Scholar
  33. 33.
    Lubbers NL, Campbell TJ, Polakowski JS, et al. Postischemic administration of CGX-1051, a peptide from cone snail venom, reduces infarct size in both rat and dog models of myocardial ischemia and reperfusion. J Cardiovasc Pharmacol. 2005;46:141–146.PubMedCrossRefGoogle Scholar
  34. 34.
    Nikolaidis LA, Doverspike A, Hentosz T, et al. Glucagon-like peptide-1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther. 2005;312:303–308.PubMedCrossRefGoogle Scholar
  35. 35.
    Khalil PN, Neuhof C, Huss R, et al. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. Eur J Pharmacol. 2005;528:124–131.PubMedCrossRefGoogle Scholar
  36. 36.
    Engbers HM, de Zeeuw S, Visser T, Cramer MJ, Grundeman PF. Myocardial blood supply by left ventricle-to-coronary artery channel: An old idea revisited. Int J Cardiol. 2006;106:145–151.PubMedCrossRefGoogle Scholar
  37. 37.
    Apple KA, Yarbrough WM, Mukherjee R, et al. Selective targeting of matrix metalloproteinase inhibition in post-infarction myocardial remodeling. J Cardiovasc Pharmacol. 2006;47:228–235.PubMedCrossRefGoogle Scholar
  38. 38.
    Duncker DJ, Haitsma DB, Liem DA, Verdouw PD, Merkus D. Exercise unmasks autonomic dysfunction in swine with a recent myocardial infarction. Cardiovasc Res. 2005;65:889–896.PubMedCrossRefGoogle Scholar
  39. 39.
    Radke PW, Heinl-Green A, Frass OM, et al. Evaluation of the porcine Ameroid constrictor model of myocardial ischemia for therapeutic angiogenesis studies. Endothelium. 2006;13:25–33.PubMedCrossRefGoogle Scholar
  40. 40.
    Yip G, Khandheria B, Belohlavek M, et al. Strain echocardiography tracks dobutamine-induced decrease in regional myocardial perfusion in nonocclusive coronary stenosis. J Am Coll Cardiol. 2004;44:1664–1671.PubMedCrossRefGoogle Scholar
  41. 41.
    Saitoh S, Muto M, Osugi T, et al. Repeated epicardial coronary artery endothelial injuries lead to a global spontaneous coronary artery spasm. Coron Artery Dis. 2004;15:137–145.PubMedCrossRefGoogle Scholar
  42. 42.
    Thompson CA, Reddy VK, Srinivasan A, et al. Left ventricular functional recovery with percutaneous, transvascular direct myocardial delivery of bone marrow-derived cells. J Heart Lung Transplant. 2005;24:1385–1392.PubMedCrossRefGoogle Scholar
  43. 43.
    Segers P, Tchana-Sato V, Leather HA, et al. Determinants of left ventricular preload-adjusted maximal power. Am J Physiol Heart Circ Physiol. 2003;284:H2295–H2301.PubMedGoogle Scholar
  44. 44.
    Zhang QY, Ge JB, Chen JZ, et al. Mast cell contributes to cardiomyocyte apoptosis after coronary microembolization. J Histochem Cytochem. 2006;54:515–523.PubMedCrossRefGoogle Scholar
  45. 45.
    Ryan LP, Jackson BM, Parish LM, et al. Regional and global patterns of annular remodeling in ischemic mitral regurgitation. Ann Thorac Surg. 2007;84:553–559.PubMedCrossRefGoogle Scholar
  46. 46.
    Pilla JJ, Blom AS, Brockman DJ, Ferrari VA, Yuan Q, Acker MA. Passive ventricular constraint to improve left ventricular function and mechanics in an ovine model of heart failure secondary to acute myocardial infarction. J Thorac Cardiovasc Surg. 2003;126:1467–1476.PubMedCrossRefGoogle Scholar
  47. 47.
    Blom AS, Pilla JJ, Gorman RC, III, et al. Infarct size reduction and attenuation of global left ventricular remodeling with the CorCap cardiac support device following acute myocardial infarction in sheep. Heart Fail Rev. 2005;10:125–139.PubMedCrossRefGoogle Scholar
  48. 48.
    Tracey WR, Magee WP, Oleynek JJ, et al. Novel N6-substituted adenosine 5′-N-methyluronamides with high selectivity for human adenosine A3 receptors reduce ischemic myocardial injury. Am J Physiol Heart Circ Physiol. 2003;285:H2780–H2787.PubMedGoogle Scholar
  49. 49.
    Flynn DM, Smith AH, Treadway JL, et al. The sulfonylurea glipizide does not inhibit ischemic preconditioning in anesthetized rabbits. Cardiovasc Drugs Ther. 2005;19:337–346.PubMedCrossRefGoogle Scholar
  50. 50.
    Thompson RB, van den Bos EJ, Davis BH, et al. Intracardiac transplantation of a mixed population of bone marrow cells improves both regional systolic contractility and diastolic relaxation. J Heart Lung Transplant. 2005;24:205–214.PubMedCrossRefGoogle Scholar
  51. 51.
    Woo YJ, Grand TJ, Berry MF, et al. Stromal cell-derived factor and granulocyte-monocyte colony-stimulating factor form a combined neovasculogenic therapy for ischemic cardiomyopathy. J Thorac Cardiovasc Surg. 2005;130:321–329.PubMedCrossRefGoogle Scholar
  52. 52.
    Schwarz ER, Meven DA, Sulemanjee NZ, et al. Monocyte chemoattractant protein 1-induced monocyte infiltration produces angiogenesis but not arteriogenesis in chronically infarcted myocardium. J Cardiovasc Pharmacol Ther. 2004;9:279–289.PubMedCrossRefGoogle Scholar
  53. 53.
    Dai Z, Jiang DJ, Hu GY, et al. 3,4,5,6-tetrahydroxyxanthone protects against myocardial ischemia-reperfusion injury in rats. Cardiovasc Drugs Ther. 2004;18:279–288.PubMedCrossRefGoogle Scholar
  54. 54.
    Piao H, Youn TJ, Kwon JS, et al. Effects of bone marrow derived mesenchymal stem cells transplantation in acutely infarcting myocardium. Eur J Heart Fail. 2005;7:730–738.PubMedCrossRefGoogle Scholar
  55. 55.
    Fang X, Tang W, Sun S, et al. Cardiopulmonary resuscitation in a rat model of chronic myocardial ischemia. J Appl Physiol. 2006;101:1091–1096.PubMedCrossRefGoogle Scholar
  56. 56.
    Miki T, Miura T, Yano T, et al. Alteration in erythropoietin-induced cardioprotective signaling by post infarct ventricular remodeling. J Pharmacol Exp Ther. 2006;317:68–75.PubMedCrossRefGoogle Scholar
  57. 57.
    Moolman JA, Hartley S, Van Wyk J, Marais E, Lochner A. Inhibition of myocardial apoptosis by ischaemic and beta-adrenergic preconditioning is dependent on p38 MAPK. Cardiovasc Drugs Ther. 2006;20:13–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Shiomi T, Tsutsui H, Hayashidani S, et al. Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation. 2002;106:3126–3132.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsusaka H, Kinugawa S, Ide T, et al. Angiotensin II type 1 receptor blocker attenuates exacerbated left ventricular remodeling and failure in diabetes-associated myocardial infarction. J Cardiovasc Pharmacol. 2006;48:95–102.PubMedCrossRefGoogle Scholar
  60. 60.
    Matsusaka H, Ide T, Matsushima S, et al. Targeted deletion of p53 prevents cardiac rupture after myocardial infarction in mice. Cardiovasc Res. 2006;70:457–465.PubMedCrossRefGoogle Scholar
  61. 61.
    Liu YH, Carretero OA, Cingolani OH, et al. Role of inducible nitric oxide synthase in cardiac function and remodeling in mice with heart failure due to myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;289:H2616–H2623.PubMedCrossRefGoogle Scholar
  62. 62.
    Thakker GD, Frangogiannis NG, Bujak M, et al. Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol. 2006;291:H2504–H2514.PubMedCrossRefGoogle Scholar
  63. 63.
    Bao W, Hu E, Tao L, et al. Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury. Cardiovasc Res. 2004;61:548–558.PubMedCrossRefGoogle Scholar
  64. 64.
    Tsutsumi YM, Patel HH, Lai NC, Takahashi T, Head BP, Roth DM. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice. Anesthesiology. 2006;104:495–502.PubMedCrossRefGoogle Scholar
  65. 65.
    Sun M, Dawood F, Wen WH, et al. Excessive tumor necrosis factor activation after infarction contributes to susceptibility of myocardial rupture and left ventricular dysfunction. Circulation. 2004;110:3221–3228.PubMedCrossRefGoogle Scholar
  66. 66.
    van den Bos EJ, Mees BM, de Waard MC, de Crom R, Duncker DJ. A novel model of cryoinjury-induced myocardial infarction in the mouse: A comparison with coronary artery ligation. Am J Physiol Heart Circ Physiol. 2005;289:H1291–H1300.PubMedCrossRefGoogle Scholar
  67. 67.
    Stoyanova E, Trudel M, Felfly H, Garcia D, Cloutier G. Characterization of circulatory disorders in {beta}-thalassemic mice by non-invasive ultrasound biomicroscopy. Physiol Genomics. 2007; 29:84–90.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • David R. Gross
    • 1
  1. 1.Department of Veterinary BiosciencesUniversity of Illinois, Urbana Champaign College of Veterinary MedicineUrbanaUSA

Personalised recommendations