Multiscale Modeling of Nanocomposite Materials

  • Gregory M. Odegard


Composite and nanocomposite materials have the potential to provide significant increases in specific stiffness and specific strength relative to materials used for many engineering structural applications. To facilitate the design and development of nanocomposite materials, structure–property relationships must be established that predict the bulk mechanical response of these materials as a function of the molecular- and micro-structure. Although many multiscale modeling techniques have been developed to predict the mechanical properties of composite materials based on the molecular structure, all of these techniques are limited in terms of their treatment of amorphous molecular structures, time-dependent deformations, molecular behavior detail, and applicability to large deformations. The proper incorporation of these issues into a multiscale framework may provide efficient and accurate tools for establishing structure–property relationships of composite materials made of combinations of polymers, metals, and ceramics. The objective of this chapter is to describe a general framework for multiscale modeling of composite materials. First, the fundamental aspects of efficient and accurate modeling techniques will be discussed. This will be followed by a review of current state-of-the-art modeling approaches. Finally, a specific example will be presented that describes the application of the approach to a specific nanocomposite material system.


Representative Volume Element Multiscale Modeling Equivalent Continuum Representative Volume Element Size Effective Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.R. Leach, Molecular Modelling: Principles and Applications. Prentice Hall, New York, 2001Google Scholar
  2. 2.
    C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. Springer-Verlag, New York, 2004Google Scholar
  3. 3.
    C.A. Truesdell and R.A. Toupin, The Classical Field Theories, in Encyclopedia of Physics, Volume III/1: Principals of Classical Mechanics and Field Theory, Flugge S, Editor. 1960, Springer-Verlag, Berlin, Germany.Google Scholar
  4. 4.
    K.J. Bathe, Finite Element Procedures. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1996Google Scholar
  5. 5.
    C.T. Herakovich, Mechanics of Fibrous Composites. John Wiley & Sons, Inc., New York, 1998Google Scholar
  6. 6.
    M. Jiang, K. Alzebdeh, I. Jasiuk, and M. Ostoja-Starzewski, “Scale and Boundary Conditions Effects in Elastic Properties of Random Composites,” Acta Mech., Vol. 148, 2001, pp. 63–78MATHCrossRefGoogle Scholar
  7. 7.
    M. Jiang, I. Jasiuk, and M. Ostoja-Starzewski, “Apparent Elastic and Elastoplastic Behavior of Periodic Composites,” Int. J. Solids Struct., Vol. 39, 2002, pp. 199–212MATHCrossRefGoogle Scholar
  8. 8.
    G.M. Odegard, T.S. Gates, L.M. Nicholson, and K.E. Wise, “Equivalent-Continuum Modeling of Nano-Structured Materials,” Compos. Sci. Technol., Vol. 62, 2002, 1869–1880Google Scholar
  9. 9.
    A.C. Eringen, Microcontinuum Field Theories. Springer-Verlag, New York, 1999MATHCrossRefGoogle Scholar
  10. 10.
    A.C. Eringen, Nonlocal Continuum Field Theories. Springer-Verlag, New York, 2002MATHGoogle Scholar
  11. 11.
    E.C. Aifantis, “On the Microstructural Origin of Certain Inelastic Models”. J. Eng. Mater. Technol-Trans. Asme, Vol. 106, 1984, pp. 326–330CrossRefGoogle Scholar
  12. 12.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices. Oxford University Press, London, 1954MATHGoogle Scholar
  13. 13.
    C. Kittel, Introduction to Solid State Physics. John Wiley & Sons, New York, 1956Google Scholar
  14. 14.
    F.F. Abraham, J.Q. Broughton, N. Bernstein, and E. Kaxiras, “Spanning the Continuum to Quantum Length Scales in a Dynamic Simulation of Brittle Fracture”. Europhys. Lett., Vol. 44, 1998, pp. 783–787CrossRefGoogle Scholar
  15. 15.
    R.E. Rudd and J.Q. Broughton, “Coarse-Grained Molecular Dynamics and the Atomic Limit of Finite Elements,” Phys. Rev. B, Vol. 58, 1998, pp. 5893–5896CrossRefGoogle Scholar
  16. 16.
    E.B. Tadmor, M. Ortiz, and R. Phillips, “Quasicontinuum Analysis of Defects in Solids,” Philos. Mag. A, Vol. 73, 1996, pp. 1529–1593CrossRefGoogle Scholar
  17. 17.
    W.A. Curtin and R.E. Miller, “Atomistic/Continuum Coupling in Computational Materials Science,” Model. Simul. Mater. Sci. Eng., Vol. 11, 2003, pp. R33–R68CrossRefGoogle Scholar
  18. 18.
    L.E. Shilkrot, W.A. Curtin, and R.E. Miller, “A Coupled Atomistic/Continuum Model of Defects in Solids,” J. Mech. Phys. Solids, Vol. 50, 2002, pp. 2085–2106MATHCrossRefGoogle Scholar
  19. 19.
    L.E. Shilkrot, R.E. Miller, and W.A. Curtin, “Multiscale Plasticity Modeling: Coupled Atomistics and Discrete Dislocation Mechanics,” J. Mech. Phys. Solids, Vol. 2004, 52, pp. 755–787MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    S.P. Xiao and Belytschko T, “A Bridging Domain Method for Coupling Continua with Molecular Dynamics,” Comput. Methods Appl. Mech. Eng., Vol. 193, 2004, pp. 1645–1669MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    G.J. Wagner and W.K. Liu, “Coupling of Atomistic and Continuum Simulations Using a Bridging Scale Decomposition,” J. Comput. Phys., Vol. 190, 2003, pp. 249–274MATHCrossRefGoogle Scholar
  22. 22.
    B. Liu, H. Jiang, Y. Huang, S. Qu, and M.F. Yu, “Atomic-Scale Finite Element Method in Multiscale Computation with Appliations to Carbon Nanotubes,” Phys. Rev. B, Vol. 72, 2005, pp. 035435CrossRefGoogle Scholar
  23. 23.
    V. Yamakov, E. Saether, D.R. Phillips, and E.H. Glaessgen, “Molecular-Dynamics Simulation-Based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum,” J. Mech. Phys. Solids, Vol. 54, 2006, pp. 1899–1928MATHCrossRefGoogle Scholar
  24. 24.
    M. Parrinello and A. Rahman, “Strain Fluctuations and Elastic Constants,” J. Chem. Phys., Vol. 76, 1982, 2662–2666CrossRefGoogle Scholar
  25. 25.
    A.A. Gusev, M.M. Zehnder, and U.W. Suter, Fluctuation Formula for Elastic Constants. Phys. Rev. B, Vol. 54, 1996, 1–4CrossRefGoogle Scholar
  26. 26.
    M.T. Meyers, J.M. Rickman, and T.J. Delph, “The Calculation of Elastic Constants from Displacement Fluctuations,” J. Appl. Phys., Vol. 98, 2005, pp. 1–3CrossRefGoogle Scholar
  27. 27.
    C.R. Miranda, K.V. Tretiakov, and S. Scandolo, “A Computational Study of Elastic Properties of Disordered Systems with Voids,” J. Non-Cryst. Solids, Vol. 352, 2006, pp. 4283–4286CrossRefGoogle Scholar
  28. 28.
    J.R. Ray and A. Rahman, “Statistical Ensembles and Molecular Dynamics Studies of Anisotropic Solids,” J. Chem. Phys., Vol. 80, 1984, pp. 4423–4428CrossRefGoogle Scholar
  29. 29.
    K. Van Workum and J.J. de Pablo, “Computer Simulation of the Mechanical Properties of Amorphous Polymer Nanostructures,” Nano Lett., Vol. 3, 2003, pp. 1405–1410CrossRefGoogle Scholar
  30. 30.
    K. Yoshimoto, G.J. Papakonstantopoulos, J.F. Lutsko, and J.J. De Pablo, “Statistical Calculation of Elastic Moduli for Atomistic Models,” Phys. Rev. B, Vol. 71, 2005, pp. 1–6CrossRefGoogle Scholar
  31. 31.
    Z. Zhou, “Fluctuations and Thermodynamics Properties of the Constant Shear Strain Ensemble,” J. Chem. Phys., Vol. 114, 2001, pp. 8769–8774CrossRefGoogle Scholar
  32. 32.
    C. Aleman and S. Munoz-Guerra, “On the Mechanical Properties of Poly(ethylene terephthalate). Force-Field Parametrization and Conformational Analysis for the Prediction of the Crystal Moduli,” J. Polym. Sci. Part B: Polym. Phys., Vol. 34, 1996, pp. 963–973CrossRefGoogle Scholar
  33. 33.
    C.F. Fan, T. Cagin, Z.M. Chen, and K.A. Smith, “Molecular Modeling of Polycarbonate. 1. Force Field, Static Structure, and Mechanical Properties,” Macromolecules, Vol. 27, 1994, pp. 2383–2391CrossRefGoogle Scholar
  34. 34.
    C.F. Fan and S.L. Hsu, “Application of the Molecular Simulation Technique to Characterize the Structure and Properties of an Aromatic Polysulfone System. 2. Mechanical and Thermal Properties,” Macromolecules, Vol. 25, 1992, 266–270CrossRefGoogle Scholar
  35. 35.
    M. Hutnik, A.S. Argon, and U.W. Suter, “Simulation of Elastic and Plastic Response in the Glassy Polycarbonate of 4,4'-Isopropylidenediphenol,” Macromolecules, Vol. 26, 1993, pp. 1097–1108CrossRefGoogle Scholar
  36. 36.
    S.S. Jang and W.H. Jo, “Analysis of the Mechanical Behavior of Amorphous Atactic Poly(oxypropylene) by Atomistic Modeling,” Macromol. Theory Simul., Vol. 8, 1999, 1–9CrossRefGoogle Scholar
  37. 37.
    S.S. Jang and W.H. Jo, “Analysis of the Mechanical Behavior of Poly(trimethylene terephthalate) in an Amorphous State under Uniaxial Extension-Compression Condition through Atomistic Modeling,” J. Chem. Phys., Vol. 110, 1999, 7524–7532CrossRefGoogle Scholar
  38. 38.
    J.W. Kang, K. Choi, W.H. Jo, and S.L. Hsu, “Structure-Property Relationships of Polyimides: A Molecular Simulation Approach,” Polymer, Vol. 39, 1998, pp. 7079–7078CrossRefGoogle Scholar
  39. 39.
    C.Y. Li and T.W. Chou, “Multiscale Modeling of Compressive Behavior of Carbon Nanotube/Polymer Composites,” Compos. Sci. Technol., Vol. 66, 2006, pp. 2409–2414CrossRefGoogle Scholar
  40. 40.
    G.M. Odegard, T.C. Clancy, T.S. Gates, “Modeling of the Mechanical Properites of Nanoparticle/Polymer Composites,” Polymer, Vol. 46, 2005, pp. 533–562CrossRefGoogle Scholar
  41. 41.
    G.M. Odegard, S.J.V. Frankland, T.S. Gates, “Effect of Nanotube Functionalization on the Elastic Properties of Polyethylene Nanotube Composites,” AIAA J., Vol. 43, 2005, pp. 1828–1835CrossRefGoogle Scholar
  42. 42.
    G.M. Odegard, T.S. Gates, K.E. Wise, C. Park, E. Siochi, “Constitutive Modeling of Nanotube-Reinforced Polymer Composites,” Compos. Sci. Technol., Vol. 63, 2003, pp. 1671–1687CrossRefGoogle Scholar
  43. 43.
    G.M. Odegard, R.B. Pipes, and P. Hubert, “Comparison of Two Models of SWCN Polymer Composites,” Compos. Sci. Technol., Vol. 64, 2004, pp. 1011–1020CrossRefGoogle Scholar
  44. 44.
    G.J. Papakonstantopoulos, M. Doxastakis, P.F. Nealey, J.L. Barrat, and J.J. De Pablo, “Calculation of Local Mechanical Properties of Filled Polymers,” Phys. Rev. E, Vol. 75, 2007, pp. 1–13CrossRefGoogle Scholar
  45. 45.
    T. Raaska, S. Niemela, and F. Sundholm, “Atom-Based Modeling of Elastic Constants in Amorphous Polystyrene,” Macromolecules, Vol. 27, 1994, 5751–5757CrossRefGoogle Scholar
  46. 46.
    G. Raffaini, S. Elli, and F. Ganazzoli, “Computer Simulation of Bulk Mechanical Properties and Surface Hydration of Biomaterials, “ J. Biomed. Mater. Res. A, Vol. 77, 2006, pp. 618–626Google Scholar
  47. 47.
    E. Saether, S.J.V. Frankland, and R.B. Pipes, “Transverse Mechanical Properties of Single-Walled Carbon Nanotube Crystals. Part I: Determination of Elastic Moduli,” Compos. Sci. Technol., Vol. 63, 2003, pp. 1543–1550CrossRefGoogle Scholar
  48. 48.
    D.N. Theodorou and U.W. Suter, “Atomistic Modeling of Mechanical Properties of Polymeric Glasses,” Macromolecules, Vol. 19, 1986, pp. 139–154CrossRefGoogle Scholar
  49. 49.
    P.K. Valavala, T.C. Clancy, G.M. Odegard, and T.S. Gates, “Nonlinear Multiscale Modeling of Polymer Materials,” Int. J. Solids Struct., Vol. 44, 2007, pp. 1161–1179MATHCrossRefGoogle Scholar
  50. 50.
    Y. Wang, C. Sun, X. Sun, J. Hinkley, G.M. Odegard, and T.S. Gates, “2-D Nano-Scale Finite Element Analysis of a Polymer Field,” Compos. Sci. Technol., Vol. 63, 2003, pp. 1581–1590Google Scholar
  51. 51.
    Y. Wang, C. Zhang, E. Zhou, C. Sun, J. Hinkley, T.S. Gates, and J. Su, “Atomistic Finite Elements Applicable to Solid Polymers,” Comput. Mater. Sci., Vol. 36, 2006, pp. 292–302CrossRefGoogle Scholar
  52. 52.
    C. Wu and W. Xu, “Atomistic Molecular Modelling of Crosslinked Epoxy Resin,” Polymer, Vol. 47, 2006, pp. 6004–6009MathSciNetCrossRefGoogle Scholar
  53. 53.
    J.S. Yang and W.H. Jo, “Analysis of the Elastic Deformation of Semicrystalline Poly(trimethylene terephthalate) by the Atomistic-Continuum Model,” J. Chem. Phys., Vol. 114, 2001; pp. 8159–8164CrossRefGoogle Scholar
  54. 54.
    D. Brown, P. Mele, S. Marceau, and N.D. Alberola, “A Molecular Dynamics Study of a Model Nanoparticle Embedded in a Polymer Matrix,” Macromolecules, Vol. 36, 2003, 1395–1406CrossRefGoogle Scholar
  55. 55.
    S.J.V. Frankland, A. Caglar, D.W. Brenner, and M. Griebel, “Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces,” J. Phys. Chem. B, Vol. 106, 2002, pp. 3046–3048CrossRefGoogle Scholar
  56. 56.
    S.J.V. Frankland, V.M. Harik, G.M. Odegard, D.W. Brenner, and T.S. Gates, “The Stress-Strain Behavior of Polymer-Nanotube Composites from Molecular Dynamics Simulation,” Compos. Sci. Technol., Vol. 63, 2003, pp. 1655–1661CrossRefGoogle Scholar
  57. 57.
    M. Griebel and J. Hamaekers, “Molecular Dynamics Simulations of the Elastic Moduli of Polymer-Carbon Nanotube Composites,” Comput. Methods Appl. Mech. Eng., Vol. 193, 2004, pp. 1773–1788MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Y. Jin and F.G. Yuan, “Simulation of Elastic Properties of Single-Walled Carbon Nanotubes,” Compos. Sci. Technol., Vol. 63, 2003, pp. 1507–1515CrossRefGoogle Scholar
  59. 59.
    D. Qi, J. Hinkley, and G. He, “Molecular Dynamics Simulation of Thermal and Mechanical Properties of Polyimide-Carbon Nanotube Composites,” Model. Simul. Mater. Sci. Eng., Vol. 13, 2005, pp. 493–507CrossRefGoogle Scholar
  60. 60.
    N. Sheng, M.C. Boyce, D.M. Parks, G.C. Rutledge, J.I. Abes, and R.E. Cohen, “Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle,” Polymer, Vol. 45, 2004, pp. 487–506CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mechanical Engineering – Engineering MechanicsMichigan Technological UniversityHoughtonUSA

Personalised recommendations