Skip to main content

Fatigue Damage Map as a Virtual Tool for Fatigue Damage Tolerance

  • Chapter
  • First Online:

Abstract

Using only readily available material properties and the concept of dislocation density evolution ahead of the crack tip, the fatigue damage map attends to develop a virtual tool able to predict the limits and the corresponding crack tip propagation rates characterising each of the fatigue stages, namely crack arrest, microstructurally and physically short crack (Stage I), long crack growth (Stage II), and Stage III growth.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to the Schmid’s law (τ c = σ cos θ cos , where for θ and equal to 45°, τ c is a maximum), plastic deformation occurs when, the applied tensile stress σ, resolved as τ c on a particular slip plane, exceeds a determined shear stress τ y .τ y = σ y/2 if the material observes the Tresca’s principles, where σ y is the corresponding yield stress.

References

  1. A.A. Griffith, “The Phenomenon of Rupture and Flow in Solids,” Philos. Trans. R. Soc. Lond. A, Vol. 221, 1921, pp. 163–197.

    Article  Google Scholar 

  2. P.C. Paris and F.A. Erdogan, “Critical Analysis of Crack Propagation Laws,” J. Basic Eng. TRANS ASME, Vol. 85(Series D), 1963, pp. 528–534.

    Article  Google Scholar 

  3. N.E. Frost and D.S. Dugdale, “The Propagation of Fatigue Cracks in Test Specimens,” J. Mech. Phys. Solids, Vol. 6, 1958, 92–110.

    Article  Google Scholar 

  4. J. Schijve, Fatigue of Structures and Materials, Kluwer Academic Publishers, The Netherlands, 2001.

    Google Scholar 

  5. Fatigue Design Handbook AE-10, Society of Automotive Engineers, USA, 1988.

    Google Scholar 

  6. S.R. Swanson, Handbook of Fatigue Testing, ASTM STOP 566, 1974.

    Google Scholar 

  7. S. Suresh, Fatigue of Materials, 2nd edition, Cambridge, University Press, Cambrige, 1998.

    Google Scholar 

  8. P. Lukáš, “Fatigue Crack Nucleation and Microstructure,” ASM Handbook Volume 19: Fatigue and Fracture, ASM International, Materials Park, Ohio, 1996, pp. 96–109.

    Google Scholar 

  9. J.R. Yates, “Fatigue of Engineering Materials. MSc in Structural Integrity (MPE603), course notes,” Department of Mechanical Engineering, The University of Sheffiel, Sheffield, U.K., 1999.

    Google Scholar 

  10. K.J. Miller, “Fundamentals of Deformation and Fracture,” In: Proc. Eshelby Memorial Symposium, Cambridge, U.K., B.A. Bilby, Cambridge University Press, 1985, pp. 477–500.

    Google Scholar 

  11. D.W. Hoeppener, “Model for Prediction of Fatigue Lives Based upon a Pitting Corrosion Fatigue Process. Fatigue Mechanisms,” In: Proc. of an ASTM-NBS-NSF Symposium, Kansas, City, Mo., J.T. Fong, Ed., ASTM STP 675, 1978, pp. 841–870.

    Google Scholar 

  12. R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd edition New York, USA, John Wiley & Sons, 1989.

    Google Scholar 

  13. F. Guiu, R. Dulniak, and B.C. Edwards, “On the Nucleation of Fatigue Cracks in Pure Polycrystalline a-iron,” Fatigue Fract. Eng. Mater. Struct., Vol. 5, 1982, pp. 311–321.

    Article  Google Scholar 

  14. K.J. Miller, “Materials Science Perspective of Metals Fatigue Resistance,” Mater. Sci. Technol., Vol. 9, 1993, pp. 453–462.

    Google Scholar 

  15. P.J.E. Forsyth, “A two stage process of fatigue crack growth, in crack propagation,” In: Proceedings of Cranfield Symposium, London, Her Majesty’s Stationery Office, 1962, pp. 76–94.

    Google Scholar 

  16. V.M. Radhakrishnan and Y. Mutoh, “On Fatigue Crack Growth in Stage I,” In: The Behaviour of Short Fatigue Cracks, EGP Pub. 1. Great Britain, K.J. Miller and E.R. de.los.Rios, Eds., Mechanical Engineering Publications Limited, 1986, pp. 87–99.

    Google Scholar 

  17. M.W. Brown, “Interfaces Between Short, Long and Non-Propagatig Cracks,” In: The Behaviour of Short Fatigue Cracks, EGF Pub. Sheffield, U.K., K.J. Miller and E.R. delosRios, Eds., Mechanical Engineering Publications, London, 1986, pp. 423–439.

    Google Scholar 

  18. Y. Mutoh and V.M. Radhakrishnan, “An Analysis of Grain Size and Yield Stress Effects on Stress at Fatigue Limit and Threshold Stress Intensity Factor,” J. Eng. Mater. Technol., Vol. 103, 1986, pp. 229–233.

    Article  Google Scholar 

  19. E. Hay and M.W. Brown, “Initiation and Early Growth of Fatigue Cracks from a Circunferential Notch Loaded in Torsion,” In: The Behaviour of Short Fatigue Cracks, EGF Pub. Sheffield, U.K., K.J. Miller and E.R. delosRios, Eds., Mechanical Engineering Publications, London, 1986, pp. 309–321.

    Google Scholar 

  20. R.O. Ritchie, F.A. McClintock, H. Nayeb-hashemi, and M.A. Ritter, “Mode III Fatigue Crack Propagation in Low Alloy Steel,” Metall. Trans., Vol. 13A, 1982, pp. 101–110.

    Article  Google Scholar 

  21. P.C. Paris and F.J. Erdogan, “A Critical Analysis of Crack Propagation Law,” J. Basic Eng. Trans. ASME, Series D, Vol. 85, No. 4, 1963, pp. 528–535.

    Article  Google Scholar 

  22. P.C. Paris, “Fracture Mechanics and Fatigue: A Historical Perspective,” Fatigue Fract. Eng. Mater. Struct., Vol. 21, 1998, pp. 535–540.

    Google Scholar 

  23. J.F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  24. W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Eng. Fract. Mech., Vol. 2, 1970, pp. 37–45.

    Article  Google Scholar 

  25. S. Suresh and R.O. Ritchie, “The Propagation of Short Fatigue Cracks,” Int. Met. Rev., Vol. 29, No. 6, 1984, pp. 445–501.

    Google Scholar 

  26. N. Louat, K. Sadananda, M. Duesbery, and A.K. Vasudevan, “A Theoretical Evaluation of Crack Closure,” Metall. Trans., Vol. 24-A, 1993, pp. 2225–2232.

    Article  Google Scholar 

  27. R.O. Ritchie, S. Suresh, and C.M. Moss, “Near Threshold Fatigue Crack Growth in 21/4 Cr 1Mo Pressure Vessel Steel in Air and Hydrogen,” J. Eng. Mater. Technol. (Trans. ASME), Vol. 102, 1980, pp. 293--299.

    Google Scholar 

  28. S. Suresh and R.O. Ritchie, “A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness,” Metall. Trans. A, Vol. 13A, 1982, pp. 1627–1631.

    Article  Google Scholar 

  29. S. Pearson, “Initiation of Fatigue Cracks in Commercial Aluminium Alloys and the Subsequent Propagation of Very Short Cracks,” Eng. Fract. Mech., Vol. 7, 1975, pp. 235–247.

    Article  Google Scholar 

  30. J. Lankford, “The Growth of Small Fatigue Cracks in 7075-T6 Aluminium,” Fatigue Fract. Eng. Mater. Struct., Vol. 5, No. 3, 1982, pp. 233–248.

    Article  Google Scholar 

  31. D. Kujawski and F. Ellyin, “A Microstructurally Motivated Model for Short Crack Growth Rate,” Short Fatigue Cracks, ESIS 13, K.J. Miller and E.R. de los Rios, Eds., Mechanical Engineering Publications, London, 1992.

    Google Scholar 

  32. D. Taylor and J.F. Knott, “Fatigue Crack Propagation Behaviour of Short Cracks: The Effect of Microstructure,” Fatigue Fract. Eng. Mater. Struct., Vol. 4, No. 2, 1981, pp. 147–155.

    Article  Google Scholar 

  33. K.J. Miller, “The Behaviour of Short Fatigue Cracks and their Initiation. Part I – A Review of Two Recent Books,” Fatigue Fract. Eng. Mater. Struct., Vol. 10, No. 1, 1987, pp. 75–91.

    Article  Google Scholar 

  34. K.J. Miller, “The Behaviour of Short Fatigue Cracks and their Initiation. Part II – A General Summary,” Fatigue Fract. Eng. Mater. Struct., Vol. 10, No. 1, 1987, pp. 75–91.

    Article  Google Scholar 

  35. K. Tokaji and T. Ogawa, “The Growth Behaviour of Microstructurally Small Fatigue Cracks in Metals,” Short Fatigue Cracks, ESIS 13, K.J. Miller and E.R. de los Rios, Eds., Mechanical Engineering Publications, London, 1992, pp. 85–99.

    Google Scholar 

  36. S. Suresh and R.O. Ritchie, “The Propagation of Short Fatigue Cracks,” Int. Met. Rev., Vol. 29, No. 6, 1984, p. 445.

    Google Scholar 

  37. H. Kitagawa and S. Takahashi, “Applicability of Fracture Mechanics to Very Small Cracks or the Cracks in the Early Stage,” In: 2nd International Conference on Mechanical Behaviour of Materials (ICM2), Boston, USA. American Society of Metals, Metal park, Ohio, 1976, pp. 627–631.

    Google Scholar 

  38. K.J. Miller, “The Behaviour of Short Fatigue Cracks and their Initiation. Part I – A Review of Two Recent Books,” Fatigue Fract. Eng. Mater. Struct., Vol. 10, No. 1, 1987, pp. 75–91.

    Article  Google Scholar 

  39. D. Taylor, “Fatigue of Short Cracks: The Limitations of Fracture Mechanics,” In: The Behaviour of Short Fatigue Cracks, EGF Pub. Sheffield, U.K., K.J. Miller and E.R. delosRios, Eds., Mechanical Engineering Publications, London, 1986, pp. 479–490.

    Google Scholar 

  40. J.M. Kendall, M.N. James, and J.F. Knott, “The Behaviour of Physically Short Fatigue Cracks in Steels,” In: The Behaviour of Short Fatigue Cracks, EGF Pub. Sheffield, U.K., K.J. Miller and E.R. delosRios, Eds., Mechanical Engineering Publications, London, 1986, pp. 241–258.

    Google Scholar 

  41. E.R. de.los.Rios, P. Mercier, and B.M. El-Sehily, “Short Crack Growth Behaviour Under Variable Amplitude Loading of Shot Peened Surfaces,” Fatigue Fract. Eng. Mater. Struct., Vol. 19, No. 2/3, 1996, pp. 175–184.

    Article  Google Scholar 

  42. R.C. Boettner, C. Laird, and A.J. McEvily, “Crack Nucleation and Growth in High Strain-Low Cycle Fatigue,” Trans. Metall. Soc. AIME, Vol. 233, 1965, pp. 379–385.

    Google Scholar 

  43. K.S. Chan and J. Lankford, “A Crack Tip Model for the Growth of Small Fatigue Cracks,” Scr. Metall., Vol. 17, 1983, pp. 529–538.

    Article  Google Scholar 

  44. K. Tanaka, “Modelling of Propagation and Non-Propagation of Small Cracks,” In: Small Fatigue Cracks, R.O. Ritchie and J. Lankford, Eds., Metallurgycal Society Inc. 1986, pp. 343–362.

    Google Scholar 

  45. P.D. Hobson, “The Formulation of a Crack Growth Equation for Short Cracks,” Fatigue Fract. Eng. Mater. Struct., Vol. 5, No. 4, 1982, pp. 323–327.

    Article  Google Scholar 

  46. P.D. Hobson, M.W. Brown, and E.R. de.los.Rios, “Two Phases of Short Crack Growth in a Medium Carbon Steel,” In: The Behaviour of Short Fatigue Cracks, EGF Pub. Sheffield, U.K., K.J. Miller and E.R. delosRios, Eds., Mechanical Engineering Publications, London, 1986, pp. 441–459.

    Google Scholar 

  47. D. Angelova and R. Akid, “A Note on Modelling Short Fatigue Crack Behaviour,” Fatigue Fract. Eng. Mater. Struct., Vol. 21, 1998, pp. 771–779.

    Article  Google Scholar 

  48. J.R. Rice, The Mechanics of Fracture, ASME AMD, Vol. 19, 1976, pp. 23–53.

    Google Scholar 

  49. R.M. McMeeking, “Finite Deformation Analysis of Crack Tip Opening in Elastic-Plastic Materials and Implications for Fracture,” J. Mech. Phys. Solids, Vol. 25, 1977, pp. 357–381.

    Article  Google Scholar 

  50. J.F. Knot, “Microscopic Aspects of Crack Extension,” In: Advances in Elasto-Plastic Fracture Mechanics, L.H. Larsson, Ed., Applied Science Publishers, Essex, England, 1980.

    Google Scholar 

  51. B.A. Bilby, A.H. Cottrell, and K.H. Swinden, “The Spread of Plastic Yielding from a Notch,” Proc. R. Soc. Lond. A, Vol. 272, 1963, pp. 304–314.

    Article  Google Scholar 

  52. A. Navarro and E.R. de.los.Rios, “A Model for Short Fatigue Crack Propagation with an Interpretation of the Short-Long Crack Transition,” Fatigue Fract. Eng. Mater. Struct., Vol. 10, No. 2, 1987, pp. 169–186.

    Article  Google Scholar 

  53. A. Navarro and E.R. de.los.Rios, “Compact Solution for a Multizone Bcs Crack Model with Bounded or Unbounded End Conditions,” Philos. Mag. A, Vol. 57, No. 1, 1988, pp. 43–50.

    Article  Google Scholar 

  54. A. Navarro and E.R. de.los.Rios, “Fatigue Crack Growth Modelling by Successive Blocking of Dislocations,” Proc. R. Soc. Lond. A, Vol. 437, 1992, pp. 375–390.

    Article  Google Scholar 

  55. A.H. Cottrell and D. Hull, “Extrusion and Intrusion by Cyclic Slip in Copper,” Proc. R. Soc. Lond. A, Vol. 242, 1957, pp. 211–213.

    Article  Google Scholar 

  56. P.J.E. Forsyth, “Slip Band Damage and Extrusion,” Proc. R. Soc. Lond. A, Vol. 242, 1957, pp. 198–202.

    Article  Google Scholar 

  57. E.R. de los Rios, M.W. Brown, K.J. Miller, and H.X. Pei, “Fatigue damage accumulation during cycles of non-proportional straining,” In Basic questions in fatigue, Vol. 1, ASTM STP 924: 1988, pp. 194–213, ASTM, Philadelphia.

    Article  Google Scholar 

  58. N.J. Petch, “The Cleavage Strength of Polycrystals,” J. Iron Steel Inst., Vol. 174, 1953, pp. 25–28.

    Google Scholar 

  59. E.R. de los Rios, “Dislocation Modelling of Fatigue Crack Growth in Polycrystals,” Eng. Mech., Vol. 5, No. 6, 1998, pp. 363–368.

    Google Scholar 

  60. D. Kujawski, “A Fatigue Crack Driving Force Parameter with Load Ratio Effects,” Inter. J. Fatigue, Vol. 23, 2001, pp. S236–S246.

    Google Scholar 

  61. A. Navarro, C. Vallellano, E.R. de los Rios, and X.J. Xin, Notch Sensitivity and Size Effects Described by a Short Crack Propagation Model,” In: Engineering Against Fatigue, J.H. Beynon, M.W. Brown, T.C. Lindley, R.A. Smith and B. Tomkins, Eds., Balkema, Netherlands, 1999.

    Google Scholar 

  62. E.R. de los Rios and A. Navarro, “Considerations of Grain Orientation and Work Hardening on Short-Fatigue Crack Modelling,” Phil. Mag. A, Vol. 61, No. 3, 1990, pp. 435–449.

    Article  Google Scholar 

  63. C.A. Rodopoulos, “Predicting the Evolution of Fatigue Damage Using the Fatigue Damage Map Method,” Theor. Appl. Fract. Mech., Vol. 45, 2006, pp. 252–265.

    Article  Google Scholar 

  64. M.W. Brown, “Interfaces Between Short, Long and Non-Propagating Cracks,” In: The Behaviour of Short Fatigue Cracks, K.J. Miller and E.R. de los Rios, Eds., Mechanical Engineering Publications, London, 1986, pp. 423–439.

    Google Scholar 

  65. A.T. Winter, “Cyclic Deformation: the Two Phase Model,” Proceedings of the Eshelby Memorial Symposium, International Union of Theoretical and Applied Mechanics, B.A. Bilby, K.J. Miller and J.R. Willis, Eds., Cambridge University Press, Cambridge, 1984, pp. 573–582.

    Google Scholar 

  66. S. Taira, K. Tanaka, and Y. Nakai, “A Model of Crack Tip Slip Band Blocked by Grain Boundary,” Mech. Res. Comm., Vol. 5, 1978, pp. 375–381.

    Article  Google Scholar 

  67. C.A. Rodopoulos and Al.Th. Kermanidis, “Understanding the Effect of Block Overloading on the Fatigue Behaviour of 2024-T351 Aluminium Alloy Using the Fatigue Damage Map,” Inter. J. Fatigue, Vol. 29, No. 2, 2006, pp. 276–288.

    Article  Google Scholar 

  68. G.R. Yoder, L.A. Cooley, and T.W. Crooker, “On Microstructural Control of Near-Threshold Fatigue Crack Growth in 7000-Series Aluminium Alloys,” Scr. Metall., Vol. 16, 1982, pp. 1021–1025.

    Article  Google Scholar 

  69. C.A. Rodopoulos, E.R. de los Rios, J.R. Yates, and A. Levers, “A Fatigue Damage Map for the 2024-T3 Aluminium Alloy,” Fatigue Fract. Eng. Mater. Struc., Vol. 26, No. 7, 2003, pp. 569–576.

    Article  Google Scholar 

  70. E.R. de los Rios, Z. Tang, and K.J. Miller, “Short Crack Fatigue Behaviour in a Medium Carbon Steel,” Fatigue Fract. Eng. Mater. Struct., Vol. 7, No. 2, 1984, pp. 97–108.

    Article  Google Scholar 

  71. R.M. Pelloux, “Crack Extension by Alternating Shear,” Eng. Fract. Mech., Vol. 1, 1970, pp. 697–704.

    Article  Google Scholar 

  72. F.A. McClintock, “Considerations for Fatigue Crack Growth Relative to Crack Tip Displacement,” In: Engineering Against Fatigue, J.H. Beynon, M.W. Brown, T.C. Lindley, R.A. Smith and B. Tomkins, Eds., A.A. Balkema Publishers, Rotterdam, Netherlands, 1999.

    Google Scholar 

  73. J.N. Eastbrook, “A Dislocation Model for the Rate of Initial Growth of Stage I Fatigue Cracks,” Inter. J. Fract., Vol. 24, 1984, pp. R43–R49.

    Article  Google Scholar 

  74. D.J. Nicholls, “The Relation Between Crack Blunting and Fatigue Crack Growth Rates,” Fatigue Fract. Eng. Mater. Struct., Vol. 17, No. 4, 1994, pp. 459–467.

    Article  Google Scholar 

  75. A.A. Wells, “Application of Fracture Mechanics at and Beyond General Yielding,” Br. Weld. J., Vol. 10, 1963, pp. 563–570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris A. Rodopoulos .

Editor information

Bahram Farahmand

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rodopoulos, C.A. (2009). Fatigue Damage Map as a Virtual Tool for Fatigue Damage Tolerance. In: Farahmand, B. (eds) Virtual Testing and Predictive Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-95924-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-95924-5_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-95923-8

  • Online ISBN: 978-0-387-95924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics