Advanced Experimental Techniques for Multiscale Modeling of Materials

  • Reza S. Yassar
  • Hessam M.S. Ghassemi


From a scientific viewpoint, direct comparison between mechanical tests and computational simulations on a one-to-one basis has the potential to lead to substantial development in the concept of virtual testing of materials. Successful application of virtual testing methodology in our daily life basis requires the use of high-fidelity computational models that are being validated through accurate characterization techniques. The content of this chapter is prepared to cover some of the most recent developments in the area of materials characterizations with great potential for virtual testing and modeling applications. During the last decade, atomic force microscopy (AFM) has evolved into an essential tool for direct measurements of intermolecular forces that can be employed for verification of first-principle and molecular dynamic models. Novel techniques in the area of in situ electron microscopy have been developed in the last decade for investigating the structure–mechanical property relationship of advanced materials. X-ray ultra-microscopy (XuM) and microelectromechanical systems (MEMS) are among the two newest in situ microscopy developments. These techniques provide an excellent platform for direct correlation between structure and properties of nanoscale materials. These systems contain a limited number of atoms and possible equilibrium configurations, which can be identified in real time by means of in situ electron microscopy techniques. In addition, because of the limited number of atoms, these systems can be atomistically modeled within the reach of currently available computational power. This chapter provides a comprehensive review on the above-mentioned characterization techniques that can be used to validate computational models at nanometer length scales.


Atomic Force Microscopy Void Growth Absorption Contrast Virtual Testing Cantilever Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface Studies by Scanning Tunneling Microscopy”, Phys. Rev. Lett., Vol. 49, 1982, p. 57CrossRefGoogle Scholar
  2. 2.
    G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “7 × 7 Reconstruction on Si(111) Resolved in Real Space’, Phys. Rev. Lett., Vol. 50, 1983, p. 120CrossRefGoogle Scholar
  3. 3.
    D.W. Pohl, W. Denk, and M. Lanz, “Silver Nanowires as Surface Plasmon Resonators”, Appl. Phys. Lett., Vol. 44, 1984, p. 651CrossRefGoogle Scholar
  4. 4.
    A. Lewis, M. Isaacson, A. Harootunian, and M. Muray, “Development of a 500 Å Spatial Resolution Light Microscope: I. Light is Efficiently Transmitted Through λ/16 Diameter Apertures”, Ultramicro., Vol. 13, 1984, p. 227CrossRefGoogle Scholar
  5. 5.
    G. Binnig, C.F. Quate, and C. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., Vol. 56, 1986, p. 930CrossRefGoogle Scholar
  6. 6.
    R. Gahlin and S. Jacobson, “A Novel Method to Map and Quantify Wear on a Micro-scale”, Wear, Vol. 222, 1998, p. 93CrossRefGoogle Scholar
  7. 7.
    M. Kempf, M. Goken, and H. Vehoff, “Nanohardness Measurements for Studying Local Mechanical Properties of Metals”, Appl Phys A: Mater Sci Pro., Vol. 66, 1998, p. 843CrossRefGoogle Scholar
  8. 8.
    N. Nagashima, S. Matsuoka, K. Miyahara, “Nanoscopic Hardness Measurement by Atomic Force Microscope”, JSME Int. J. Ser. A: Mech. Mater. Eng., Vol. 39, 1996, p. 456Google Scholar
  9. 9.
    K.L. Westra, D.J. Thomson, “Microstructure of Thin Films Observed Using Atomic Force Microscopy”, Thi. Sol. Fil., Vol. 257, 1995, p. 15CrossRefGoogle Scholar
  10. 10.
    R. Wiesendanger, Scanning Probe Microscopy and Spectroscopy: Methods and Applications, Cambridge University Press, Cambridge, 1995Google Scholar
  11. 11.
    G. Binning, H. Rohrer, “Scanning Tunneling Microscopy”, IBM, J. Res. Dev., Vol. 30, 1986, p. 355Google Scholar
  12. 12.
    T. Junno, S.B. Carlsson, H. Xu, L. Montelius, L. Samuelson, “Fabrication of Quantum Devices by Angstrom-Level Manipulation of Nanoparticles with an Atomic Force Microscope”, Appl. Phys. Lett., Vol. 72, 1998, p. 548CrossRefGoogle Scholar
  13. 13.
    K. Matsumoto, M. Ishii, K. Segawa, Y. Oka, B.J. Vartanian, J.S. Harris, “Room Temperature Operation of a Single Electron Transistor Made by the Scanning Tunneling Microscope Nano Oxidation Process for the TiOx/Ti System”, Appl. Phys. Lett., Vol. 68, 1996, p. 34CrossRefGoogle Scholar
  14. 14.
    J. Feng, L.-T. Weng, C.-M. Chan, J. Xhie, L. Li, “Imaging of Sub-surface Nano Particles by Tapping-Mode Atomic Force Microscopy”, Polmer, Vol. 42, 2001, 2259CrossRefGoogle Scholar
  15. 15.
    Y.H. Lu, S. Liang, W.Y. Chu, L.J. Qiao, “In Situ AFM Observation of Crack Propagation in CuNiAl Shape Memory Alloy”, Intermet., Vol. 10, 2002, p. 823CrossRefGoogle Scholar
  16. 16.
    K. Miyahara, N. Nagashima, T. Ohmura, S. Matsuoka, “Evaluation of Mechanical Properties in Nanometer Scale Using AFM-Based Nanoindentation Tester”, Nanostr. Mat., Vol. 12, 1999Google Scholar
  17. 17.
    M. Goeken, M. Kempf, “Microstructural Properties of Superalloys Investigated by Nano- indentations in an Atomic Force Microscope”, Acta Mater., Vol. 47, 1999, p. 1043CrossRefGoogle Scholar
  18. 18.
    X. Han and Z. Zhang, “Experimental Nanomechanics of One-Dimensional Nanomaterials by In Situ Microscopy”, Nano, Bri. Rep. Rev., Vol. 249, 2007Google Scholar
  19. 19.
    X. Li, X. Wang, Q. Xiong, and P.C. Eklund, “Mechanical Properties of ZnS Nanobelts”, Nano Lett. Vol. 5, 2005, p. 1982Google Scholar
  20. 20.
    H. Zhang, J. Tang, L. Zhang, B. An, and L.-C. Qin, “Atomic Force Microscopy Measurement of the Young”s Modulus and Hardness of Single LaB6 Nanowires’, Appl. Phy. Lett., Vol. 92, 2008, p. 173Google Scholar
  21. 21.
    H. Ni, X. Li, and H. Gao, “Elastic Modulus of Amorphous SiO2 Nanowires”, Appl. Phy. Lett., Vol. 88, 2006, p. 43CrossRefGoogle Scholar
  22. 22.
    P. Guaino, M. Gillet, R. Delamare, and E. Gillet, “Modification of Electrical Properties of Tungsten Oxide Nanorods Using Conductive Atomic Force Microscopy”, Sur. Sci., Vol. 601, 2007, p. 2684CrossRefGoogle Scholar
  23. 23.
    E.Z. Luo, A.B. Pakhomov, Z.-Q. Zhang, M.-C. Chan, I.H. Wilson, J.B. Xu, and X. Yan, “Conductance Distribution in Granular Metal Films: A Combined Study by Conducting Atomic Force Microscopy and Computer Simulation”, Phys., Vol. 279, 2000, p. 98Google Scholar
  24. 24.
    D.J. Müller and K. Anderson, “Biomolecular Imaging Using Atomic Force Microscopy”, Tren. Biotech., Vol. 20, 2002, p. 8CrossRefGoogle Scholar
  25. 25.
    K.D. Jandt, “Atomic Force Microscopy of Biomaterials Surfaces and Interfaces”, Surf. Sci., Vol. 491, 2001, p. 303CrossRefGoogle Scholar
  26. 26.
    D. Mulliah, S.D. Kenny, R. Smith, and C.F. Sanz-Navarro, “Molecular Dynamic Simulations of Nanoscratching of Silver (100)”, Nanotechnology Vol. 15, 2004, p. 243CrossRefGoogle Scholar
  27. 27.
    Y. Yan, T. Sun, S. Dong, and Y. Liang, “Study on Effects of the Feed on AFM-Based Nano-Scratching Process Using MD Simulation”, Comp. Mat. Sci., Vol. 40, 2007, p. 1CrossRefGoogle Scholar
  28. 28.
    Y. Isono and T. Tanaka, “Molecular Dynamics Simulations of Atomic Scale Indentation and Cutting Process with Atomic Force Microscope”, JSME Int. J. A, Vol. 40, 1997, p. 211Google Scholar
  29. 29.
    Y.D. Yan, T. Sun, S. Dong, X.C. Luo, and Y.C. Liang, “Molecular Dynamics Simulation of Processing Using AFM Pin Tool”, App. Sur. Sci., Vol. 252, 2006, p. 7523CrossRefGoogle Scholar
  30. 30.
    C. Walter, T. Antretter, R. Daniel, and C. Mitterer, “Finite Element Simulation of the Effect of Surface Roughness on Nanoindentaion of Thin Films with Spherical Indenters”, Sur. Coat. Tech., Vol. 202, 2007, p. 1103CrossRefGoogle Scholar
  31. 31.
    S.C. Mayo, P.R. Miller, S.W. Wilkins, T.J. Davis, D. Gao, and T.E. Gureyev, “Quantitative X-ray Projection Microscopy: Phase-Contrast and Multi-spectral Imaging”, J. Micr., Vol. 207, 2002, p. 79MathSciNetCrossRefGoogle Scholar
  32. 32.
    S.C. Mayo, T.J. Davis, T.E. Gureyev, P.R. Miller, D. Paganin, and A. Pogany, “X-ray Phase-Contrast Microscopy and Microtomography”, Opt. Exp., Vol. 11, 2003, p. 2289CrossRefGoogle Scholar
  33. 33.
    D. Wu, D. Gao, S.C. Mayo, J. Gotama, and C. Way, “X-ray Ultramicroscopy: A New Method for Observation and Measurement of Filler Dispersion in Thermoplastic Composites”, Comp. Sci. Tech., Vol. 68, 2008, p. 178CrossRefGoogle Scholar
  34. 34.
    W.H. Liu, X.M. Zhang, J.G. Tanga, and Y.X. Du, “Simulation of Void Growth and Coalescence Behavior with 3D Crystal Plasticity Theory”, Com. Mat. Sci., Vol. 130, 2007Google Scholar
  35. 35.
    G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, and P.M. Gullett, “A Molecular Dynamics Study of Volid Growth and Coalescence in Single Crystal Nickel”, Int. J. Pla., Vol. 22, 2006, p. 257MATHCrossRefGoogle Scholar
  36. 36.
    S. Zablera, A. Racka, I. Mankea, K. Thermannb, J. Tiedemannb, N. Harthillc, and H. Riesemeier, “High-Resolution Tomography of Cracks, Porosity and Microstructure in Greywacke and Limestone”, J. Str. Geo., Vol. 30, 2008, p. 876CrossRefGoogle Scholar
  37. 37.
    M.A. Haque and T. Saif, “A Novel Technique for Tensile Testing of Submicron Scale Freestanding Specimens in SEM and TEM”, Exp. Mech., Vol. 42, 2002, p. 123CrossRefGoogle Scholar
  38. 38.
    J.H. Han and M.T.A. Saif, “In Situ Microtensile Stage for Electromechanical Characterization of Nanoscale Freestanding films”, Rev. Sci. Ins., Vol. 77, 2006, p. 045102CrossRefGoogle Scholar
  39. 39.
    B. Peng, M. Locascio, P. Zapol, S. Li, S.L. Mielke, G.C. Schatz, and H.D. Espinosa “Measurements of Near-Ultimate Strength for Multiwalled Carbon Nanotubes and Irradiation-Induced Cross Linking Improvements”, Nat. Nanotech., Vol. 3, 2008,pp. 626–631CrossRefGoogle Scholar
  40. 40.
    S. Lu, Z. Guo, W. Ding, and R.S. Ruoff, “Analysis of a Microelectromechanical System Testing Stage for Tensile Loading of Nanostructures”, Rev. Sci. Ins., Vol. 77, 2006,p. 056103CrossRefGoogle Scholar
  41. 41.
    J. Aebersold, K. Walsh, M. Crain, M. Martin, M. Voor, J.-T. Lin, D. Jackson, W. Hnat, and J. Naber, “Design and Development of a MEMS Capacitive Bending Strain Sensor”, J. Micromech. Microeng., Vol. 16, 2006, p. 935CrossRefGoogle Scholar
  42. 42.
    C. Luo, T.W. Schneider, R.C. White, J. Currie, and M. Paranjape, “A Simple Deflection-Testing Method to Determine Poisson”s Ratio for MEMS Applications”, J. Micromech. Microeng., Vol. 13, 2003, p. 129CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Reza S. Yassar
    • 1
  • Hessam M.S. Ghassemi
    • 1
  1. 1.Mechanical Engineering-Engineering Mechanics DepartmentMichigan Technological UniversityHoughtonUSA

Personalised recommendations