Skip to main content

Functional Nanostructured Polymer–Metal Interfaces

  • Chapter
  • First Online:
Virtual Testing and Predictive Modeling

Abstract

The study of polymer–metal surfaces is important for basic scientific research as well as many practical applications in aircraft, automobile, biomedical, and electronics industries. The possibility of controlling particle size and particle surface chemistry of metals would help us to understand the fundamental mechanism of polymer–metal adhesion in general. We have recently demonstrated that nanostructured polymers can be fabricated by an oblique-angle polymerization method. These structures have a high aspect ratio and the production technique does not require any template or lithography method or a surfactant for deposition. We studied influences of the chemical functionality, morphology, and topology of the nanostructured films on the physical properties of metallic–polymer interfaces. Based on the nanostructured polymer mediated metal technology, we can develop novel polymer–metal interfaces with the following attributes: (1) high surface area materials with controlled roughness, (2) light weight and high adhesion strength of polymer to metal, and (3) industrial-scale deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.B. Messersmith and E.P. Giannelis, “Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites,” Chem. Mater., Vol. 6, 1994, pp. 1719–1725

    Article  Google Scholar 

  2. B. Wetzel, F. Haupert, and M.Q. Zhang, “Epoxy Nanocomposites with High Mechanical and Tribological Performance,” Compos. Sci. Technol., Vol. 63, pp. 2055–2067 (2003).

    Article  Google Scholar 

  3. Y.Y. Sun, Z.Q. Zhang, K.S. Moon, and C.P. Wong, “Glass Transition and Relaxation Behavior of Epoxy Nanocomposites,” J. Polym. Sci. Part B-Polym. Phys., Vol. 42, 2004, pp. 3849–3858

    Article  Google Scholar 

  4. Y.P. Zheng, Y. Zheng, and R.C. Ning, “Effects of Nanoparticles SiO2 on the Performance of Nanocomposites,” Mater. Lett., Vol. 57, 2003, 2940–2944

    Article  Google Scholar 

  5. J. Li, J.K. Kim, and M.L. Sham, “Conductive Graphite Nanoplatelet/Epoxy Nanocomposites: Effects of Exfoliation and UV/Ozone Treatment of Graphite,” Scr. Mater., Vol. 53, 2005, pp. 235–240

    Article  Google Scholar 

  6. S.A. Zavyalov, A.N. Pivkina, and J. Schoonman, “Formation and Characterization of Metal-Polymer Nanostructured Composites,” Solid State Ionics, Vol. 147, 2002, pp. 415–419

    Article  Google Scholar 

  7. G.M. Odegard, T.C. Clancy, and T.S. Gates, “Modeling of the Mechanical Properites of Nanoparticle/Polymer Composites,” Polymer, Vol. 46, 2005, pp. 533–562

    Article  Google Scholar 

  8. A.N. Netravali, R.B. Henstenburg, S.L. Phoenix, and P. Schwartz, “Interfacial Shear-Strength Studies Using the Single-Filament-Composite Test. 1. Experiments on Graphite Fibers in Epoxy,” Polym. Compos., Vol. 10, 1989, pp. 226–241

    Article  Google Scholar 

  9. Z. Wang, Y. Ou, T.M. Lu, and N. Koratkar, “Wetting and Electrowetting Properties of Carbon Nanotube Templated Parylene Films,” J. Phys. Chem. B, Vol. 111, 2007, pp. 4296–4299

    Article  Google Scholar 

  10. W. Caseri, “Nanocomposites of Polymers and Inorganic Particles: Preperation, Structure and Properties,” Mater. Sci. Technol., Vol. 22, 2006, pp. 807–817

    Article  Google Scholar 

  11. L.T. Drzal, M.J. Rich, M.F. Koenig, and P.F. Lloyd, “Adhesion of Graphite Fibers to Epoxy Matrices. 2. The Effect of Fiber Finish,” J. Adhes., Vol. 16, 1983, pp. 133–152

    Article  Google Scholar 

  12. P.J. Herrerafranco and L.T. Drzal, “Comparison of Methods for the Measurement of Fiber Matrix Adhesion in Composites,” Composites, Vol. 23, 1992, pp. 2–27

    Article  Google Scholar 

  13. G.M. Odegard and T.S. Gates, “Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite,” J. Intell. Mater. Syst. Struct., Vol. 17, 2006, pp. 239–246

    Article  Google Scholar 

  14. K. Stoeckl and L. Vanino, Z. Phys. Cehm., Vol. 30, 1899, p. 98

    Google Scholar 

  15. P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone, and V.L. Colvin, “Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids,” J. Am. Chem. Soc., Vol. 121, 1999, pp. 11630–11637

    Article  Google Scholar 

  16. N. Sheng, et al. “Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle,” Polymer, Vol. 45, 2004, pp. 487–506

    Article  Google Scholar 

  17. P. Kao, N. Malvadkar, D. Allara, and M.C. Demirel, “Surface enhanced Raman Detection of Bacteria on Metalized Nanostructured Poly(p-xylylene) Films,” Adv. Mater., Vol. 20, 2008, pp. 3562–3565

    Article  Google Scholar 

  18. N. Malvadkar, S. Park, H. Wang, M. Macdonald, and M.C. Demirel, “Catalytic Activity of Cobalt Deposited on Nanostructured Poly(p-xylylene) Films,” J. Power Sources, Vol. 182, 2008, pp. 323–328

    Article  Google Scholar 

  19. R. Shenhar, T.B. Norsten, and V.M. Rotello, “Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications,” Adv. Mater., Vol. 17, 2005, pp. 657–669

    Article  Google Scholar 

  20. W.F. Gorham, “A New General Synthetic Method for Preparation of Linear Poly-P-Xylylenes,” J. Polym. Sci. Part A-1-Polym. Chem., Vol. 4, 1966, p. 3027

    Article  Google Scholar 

  21. M.C. Demirel, M. Cetinkaya, A. Singh, and W.J. Dressick, “Noncovalent Deposition of Nanoporous ni Membranes on Spatially Organized Poly(p-xylylene) Film Templates,” Adv. Mat., Vol. 19, 2007, pp. 4495–4499

    Article  Google Scholar 

  22. M. Cetinkaya, N. Malvadkar, and M.C. Demirel, “Power-Law Scaling of Structured Poly(P-Xylylene) Films Deposited by Oblique Angle,” J. Polym. Sci. Part B: Polym. Phys., Vol. 46, 2008, pp. 640–648

    Article  Google Scholar 

  23. A. Cetinkaya, S. Boduroglu, and M.C. Demirel, “Growth of Nanostructured Thin Films of Poly (p-xytylene) Derivatives by Vapor Deposition,” Polymer, Vol. 48, 2007, pp. 4130–4134

    Article  Google Scholar 

  24. S.L. Brandow, et al. “Size-Controlled Colloidal Pd(II) Catalysts for Electroless Ni Deposition in Nanolithography Applications,” J. Electrochem. Soc., Vol. 144, 1997, pp. 3425–3434

    Article  Google Scholar 

  25. W.J. Dressick, C.S. Dulcey, J.H. Georger, G.S. Calabrese, and J.M. Calvert, “Covalent Binding of Pd Catalysts to Ligating Self-Assembled Monolayer Films for Selective Electroless Metal-Deposition,” J. Electrochem. Soc., Vol. 141, 1994, pp. 210–220

    Article  Google Scholar 

  26. A. Rogach, et al. “Nano- and Microengineering: Three-Dimensional Colloidal Photonic Crystals Prepared from Submicrometer-Sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells,” Adv. Mater., Vol. 12, 2000, p. 333

    Article  Google Scholar 

  27. F.J. Castano, et al. “Magnetization Reversal in Sub-100 nm Pseudo-Spin-Valve Element Arrays,” Appl. Phys. Lett., Vol. 79, pp. 2001, 1504–1506

    Article  Google Scholar 

  28. M. Brust, D. Bethell, C.J. Kiely, and D.J. Schiffrin, “Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties,” Langmuir, Vol. 14, 1998, pp. 5425–5429

    Article  Google Scholar 

  29. S.H. Sun, et al. “Controlled Synthesis and Assembly of FePt Nanoparticles,” J. Phys. Chem. B, Vol. 107, 2003, pp. 5419–5425

    Article  Google Scholar 

  30. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, “A DNA-Based Method for Rationally Assembling nanoparticles into macroscopic materials,” Nature, Vol. 382, 1996, pp. 607–609

    Article  Google Scholar 

  31. C.M. Coyle, G. Chumanov, and P.W. Jagodzinski, “Surface-Enhanced Raman Spectra of the Reduction Product of 4-Cyanopyridine on Copper Colloids,” J. Raman Spectrosc., Vol. 29, 1998, pp. 757–762

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by a Young Investigator Program Award from the Office of Naval Research (N000140710801), Research Experience for Undergraduates in Nanoscale Science, Engineering and Technology (to J.L and M.U.) from the Penn State National Nanotechnology Infrastructure Network (National Science Foundation), and Penn State Biomaterials and Biotechnology Summer Institute (National Institutes of Health). We thank Dr. Aman Haque (Penn State), Dr. Metin Sitti (CMU), and Mr. David Welch (summer student) for providing patterned surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melik C. Demirel .

Editor information

Bahram Farahmand

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Malvadkar, N.A., Ulizio, M.A., Lowman, J., Demirel, M.C. (2009). Functional Nanostructured Polymer–Metal Interfaces. In: Farahmand, B. (eds) Virtual Testing and Predictive Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-95924-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-95924-5_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-95923-8

  • Online ISBN: 978-0-387-95924-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics