Functional Nanostructured Polymer–Metal Interfaces

  • Niranjan A. Malvadkar
  • Michael A. Ulizio
  • Jill Lowman
  • Melik C. Demirel


The study of polymer–metal surfaces is important for basic scientific research as well as many practical applications in aircraft, automobile, biomedical, and electronics industries. The possibility of controlling particle size and particle surface chemistry of metals would help us to understand the fundamental mechanism of polymer–metal adhesion in general. We have recently demonstrated that nanostructured polymers can be fabricated by an oblique-angle polymerization method. These structures have a high aspect ratio and the production technique does not require any template or lithography method or a surfactant for deposition. We studied influences of the chemical functionality, morphology, and topology of the nanostructured films on the physical properties of metallic–polymer interfaces. Based on the nanostructured polymer mediated metal technology, we can develop novel polymer–metal interfaces with the following attributes: (1) high surface area materials with controlled roughness, (2) light weight and high adhesion strength of polymer to metal, and (3) industrial-scale deposition.


Metal Layer Copper Nanoparticles Electroless Deposition Nanostructured Film Vapor Phase Deposition 



This research is supported by a Young Investigator Program Award from the Office of Naval Research (N000140710801), Research Experience for Undergraduates in Nanoscale Science, Engineering and Technology (to J.L and M.U.) from the Penn State National Nanotechnology Infrastructure Network (National Science Foundation), and Penn State Biomaterials and Biotechnology Summer Institute (National Institutes of Health). We thank Dr. Aman Haque (Penn State), Dr. Metin Sitti (CMU), and Mr. David Welch (summer student) for providing patterned surfaces.


  1. 1.
    P.B. Messersmith and E.P. Giannelis, “Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites,” Chem. Mater., Vol. 6, 1994, pp. 1719–1725CrossRefGoogle Scholar
  2. 2.
    B. Wetzel, F. Haupert, and M.Q. Zhang, “Epoxy Nanocomposites with High Mechanical and Tribological Performance,” Compos. Sci. Technol., Vol. 63, pp. 2055–2067 (2003).CrossRefGoogle Scholar
  3. 3.
    Y.Y. Sun, Z.Q. Zhang, K.S. Moon, and C.P. Wong, “Glass Transition and Relaxation Behavior of Epoxy Nanocomposites,” J. Polym. Sci. Part B-Polym. Phys., Vol. 42, 2004, pp. 3849–3858CrossRefGoogle Scholar
  4. 4.
    Y.P. Zheng, Y. Zheng, and R.C. Ning, “Effects of Nanoparticles SiO2 on the Performance of Nanocomposites,” Mater. Lett., Vol. 57, 2003, 2940–2944CrossRefGoogle Scholar
  5. 5.
    J. Li, J.K. Kim, and M.L. Sham, “Conductive Graphite Nanoplatelet/Epoxy Nanocomposites: Effects of Exfoliation and UV/Ozone Treatment of Graphite,” Scr. Mater., Vol. 53, 2005, pp. 235–240CrossRefGoogle Scholar
  6. 6.
    S.A. Zavyalov, A.N. Pivkina, and J. Schoonman, “Formation and Characterization of Metal-Polymer Nanostructured Composites,” Solid State Ionics, Vol. 147, 2002, pp. 415–419CrossRefGoogle Scholar
  7. 7.
    G.M. Odegard, T.C. Clancy, and T.S. Gates, “Modeling of the Mechanical Properites of Nanoparticle/Polymer Composites,” Polymer, Vol. 46, 2005, pp. 533–562CrossRefGoogle Scholar
  8. 8.
    A.N. Netravali, R.B. Henstenburg, S.L. Phoenix, and P. Schwartz, “Interfacial Shear-Strength Studies Using the Single-Filament-Composite Test. 1. Experiments on Graphite Fibers in Epoxy,” Polym. Compos., Vol. 10, 1989, pp. 226–241CrossRefGoogle Scholar
  9. 9.
    Z. Wang, Y. Ou, T.M. Lu, and N. Koratkar, “Wetting and Electrowetting Properties of Carbon Nanotube Templated Parylene Films,” J. Phys. Chem. B, Vol. 111, 2007, pp. 4296–4299CrossRefGoogle Scholar
  10. 10.
    W. Caseri, “Nanocomposites of Polymers and Inorganic Particles: Preperation, Structure and Properties,” Mater. Sci. Technol., Vol. 22, 2006, pp. 807–817CrossRefGoogle Scholar
  11. 11.
    L.T. Drzal, M.J. Rich, M.F. Koenig, and P.F. Lloyd, “Adhesion of Graphite Fibers to Epoxy Matrices. 2. The Effect of Fiber Finish,” J. Adhes., Vol. 16, 1983, pp. 133–152CrossRefGoogle Scholar
  12. 12.
    P.J. Herrerafranco and L.T. Drzal, “Comparison of Methods for the Measurement of Fiber Matrix Adhesion in Composites,” Composites, Vol. 23, 1992, pp. 2–27CrossRefGoogle Scholar
  13. 13.
    G.M. Odegard and T.S. Gates, “Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite,” J. Intell. Mater. Syst. Struct., Vol. 17, 2006, pp. 239–246CrossRefGoogle Scholar
  14. 14.
    K. Stoeckl and L. Vanino, Z. Phys. Cehm., Vol. 30, 1899, p. 98Google Scholar
  15. 15.
    P. Jiang, K.S. Hwang, D.M. Mittleman, J.F. Bertone, and V.L. Colvin, “Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids,” J. Am. Chem. Soc., Vol. 121, 1999, pp. 11630–11637CrossRefGoogle Scholar
  16. 16.
    N. Sheng, et al. “Multiscale Micromechanical Modeling of Polymer/Clay Nanocomposites and the Effective Clay Particle,” Polymer, Vol. 45, 2004, pp. 487–506CrossRefGoogle Scholar
  17. 17.
    P. Kao, N. Malvadkar, D. Allara, and M.C. Demirel, “Surface enhanced Raman Detection of Bacteria on Metalized Nanostructured Poly(p-xylylene) Films,” Adv. Mater., Vol. 20, 2008, pp. 3562–3565CrossRefGoogle Scholar
  18. 18.
    N. Malvadkar, S. Park, H. Wang, M. Macdonald, and M.C. Demirel, “Catalytic Activity of Cobalt Deposited on Nanostructured Poly(p-xylylene) Films,” J. Power Sources, Vol. 182, 2008, pp. 323–328CrossRefGoogle Scholar
  19. 19.
    R. Shenhar, T.B. Norsten, and V.M. Rotello, “Polymer-Mediated Nanoparticle Assembly: Structural Control and Applications,” Adv. Mater., Vol. 17, 2005, pp. 657–669CrossRefGoogle Scholar
  20. 20.
    W.F. Gorham, “A New General Synthetic Method for Preparation of Linear Poly-P-Xylylenes,” J. Polym. Sci. Part A-1-Polym. Chem., Vol. 4, 1966, p. 3027CrossRefGoogle Scholar
  21. 21.
    M.C. Demirel, M. Cetinkaya, A. Singh, and W.J. Dressick, “Noncovalent Deposition of Nanoporous ni Membranes on Spatially Organized Poly(p-xylylene) Film Templates,” Adv. Mat., Vol. 19, 2007, pp. 4495–4499CrossRefGoogle Scholar
  22. 22.
    M. Cetinkaya, N. Malvadkar, and M.C. Demirel, “Power-Law Scaling of Structured Poly(P-Xylylene) Films Deposited by Oblique Angle,” J. Polym. Sci. Part B: Polym. Phys., Vol. 46, 2008, pp. 640–648CrossRefGoogle Scholar
  23. 23.
    A. Cetinkaya, S. Boduroglu, and M.C. Demirel, “Growth of Nanostructured Thin Films of Poly (p-xytylene) Derivatives by Vapor Deposition,” Polymer, Vol. 48, 2007, pp. 4130–4134CrossRefGoogle Scholar
  24. 24.
    S.L. Brandow, et al. “Size-Controlled Colloidal Pd(II) Catalysts for Electroless Ni Deposition in Nanolithography Applications,” J. Electrochem. Soc., Vol. 144, 1997, pp. 3425–3434CrossRefGoogle Scholar
  25. 25.
    W.J. Dressick, C.S. Dulcey, J.H. Georger, G.S. Calabrese, and J.M. Calvert, “Covalent Binding of Pd Catalysts to Ligating Self-Assembled Monolayer Films for Selective Electroless Metal-Deposition,” J. Electrochem. Soc., Vol. 141, 1994, pp. 210–220CrossRefGoogle Scholar
  26. 26.
    A. Rogach, et al. “Nano- and Microengineering: Three-Dimensional Colloidal Photonic Crystals Prepared from Submicrometer-Sized Polystyrene Latex Spheres Pre-Coated with Luminescent Polyelectrolyte/Nanocrystal Shells,” Adv. Mater., Vol. 12, 2000, p. 333CrossRefGoogle Scholar
  27. 27.
    F.J. Castano, et al. “Magnetization Reversal in Sub-100 nm Pseudo-Spin-Valve Element Arrays,” Appl. Phys. Lett., Vol. 79, pp. 2001, 1504–1506CrossRefGoogle Scholar
  28. 28.
    M. Brust, D. Bethell, C.J. Kiely, and D.J. Schiffrin, “Self-Assembled Gold Nanoparticle Thin Films with Nonmetallic Optical and Electronic Properties,” Langmuir, Vol. 14, 1998, pp. 5425–5429CrossRefGoogle Scholar
  29. 29.
    S.H. Sun, et al. “Controlled Synthesis and Assembly of FePt Nanoparticles,” J. Phys. Chem. B, Vol. 107, 2003, pp. 5419–5425CrossRefGoogle Scholar
  30. 30.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, and J.J. Storhoff, “A DNA-Based Method for Rationally Assembling nanoparticles into macroscopic materials,” Nature, Vol. 382, 1996, pp. 607–609CrossRefGoogle Scholar
  31. 31.
    C.M. Coyle, G. Chumanov, and P.W. Jagodzinski, “Surface-Enhanced Raman Spectra of the Reduction Product of 4-Cyanopyridine on Copper Colloids,” J. Raman Spectrosc., Vol. 29, 1998, pp. 757–762CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Niranjan A. Malvadkar
    • 1
  • Michael A. Ulizio
    • 1
  • Jill Lowman
    • 1
  • Melik C. Demirel
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations