Advertisement

Multiscale Approach to Predicting the Mechanical Behavior of Polymeric Melts

  • R.C. Picu
Chapter

Abstract

Modeling the mechanical behavior of polymers and polymer-based materials is notoriously difficult, primarily due to the need to integrate physics taking place on multiple scales. In this chapter we review single-scale models used to represent polymers and their composites, including atomistic, coarse–grained, and continuum models. Each of these has limitations associated with either accuracy or efficiency. To combine their advantages while reducing the associated drawbacks, multiscale methods are desirable. Two strategies are presented, both belonging to the class of “information-passing” methods. In the first, the physics of (dielectric and stress) relaxation is studied on the molecular scale and relevant parameters are calibrated using single-scale molecular dynamics and Monte Carlo techniques. These parameters are then incorporated in constitutive laws whose functional form is physically motivated. Such constitutive laws can then be used in continuum models on larger scales. This strategy is exemplified for a class of model polymer nanocomposites. In the second approach, a system reduction technology is developed to coarse grain the structure and dynamics of atomistic models of dense polymers. The coarse-grained models are calibrated using an equilibrium fine-scale model of a monodisperse system and then are used to predict the behavior of other systems in equilibrium and nonequilibrium.

Keywords

Atomistic Model Coarse Graining Coarse Scale Coarse Model Chain Backbone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Several people contributed to the material presented here: Dr. Abhik Rakshit, developed the coarse graining technology, Prof. Alireza Sarvestani, Dr. Murat Ozmusul, Dr. Peter Dionne and Prof. Rahmi Ozisik contributed to the various aspects of the nanocomposite study.

References

  1. 1.
    R.F. Rapold and W.L. Mattice, “Introduction of Short and Long Range Energies to Simulate Real Chains on the 2nnd Lattice,” Macromolecules, Vol. 29, 1996, p. 2457CrossRefGoogle Scholar
  2. 2.
    J. Cho and W.L. Mattice, “Estimation of Long-Range Interaction in Coarse-Grained Rotational Isomeric State Polyethylene Chains on a High Coordination Lattice,” Macromolecules, Vol. 30, 1997, p. 637CrossRefGoogle Scholar
  3. 3.
    M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids, Oxford University Press, New York, 1987MATHGoogle Scholar
  4. 4.
    V. Galiatsatos, Molecular Simulation Methods for Predicting Polymer Properties, Wiley, Hoboken, 2005Google Scholar
  5. 5.
    D. Frenkel and B. Smit, “Understanding Molecular Simulation: From Algorithms to Applications,” Academic Press, San Diego, 2002Google Scholar
  6. 6.
    K. Kremer and G.S. Grest, “Dynamics of Entangled Linear Polymer Melts: A Molecular-Dynamics Simulation,” J. Chem. Phys., Vol. 92, 1990, p. 5057CrossRefGoogle Scholar
  7. 7.
    R. Ozisik, P. Doruker, et al., “Translational Diffusion in Monte Carlo Simulations of Polymer Melts: Center of Mass Displacement vs. Integrated Velocity Autocorrelation Function,” Comput. Theor. Polym. Sci., Vol. 10, 2000, p. 411CrossRefGoogle Scholar
  8. 8.
    M. Doi and S.F. Edwards, Theory of Polymer Dynamics, Clarendon, Oxford, 1986Google Scholar
  9. 9.
    G. Ronca and G. Allegra, “An Approach to Rubber Elasticity with Internal Constrains,” J. Chem. Phys., Vol. 63, 1975, p. 4990CrossRefGoogle Scholar
  10. 10.
    W. Hess, “Generalized Rouse Theory for Entangled Polymeric Liquids,” Macromolecules, Vol. 21, 1988, p. 2620CrossRefGoogle Scholar
  11. 11.
    T.A. Kavassalis and J. Noolandi, “A New Theory of Entanglements and Dynamics in Dense Polymer Systems,” Macromolecules, Vol. 21, 1988, p. 2869CrossRefGoogle Scholar
  12. 12.
    K.S. Schweitzer, “Microscopic Theory of the Dynamics of Polymeric Liquids: General Formulation of a Mode-Mode-Coupling Approach,” J. Chem. Phys, Vol. 91, 1989, p. 5802CrossRefGoogle Scholar
  13. 13.
    R.G. Larson, “A Constitutive Equation for Polymer Melts Based on Partially Extended Strand Convection,” J. Rheol., Vol. 28, 1984, p. 545MATHCrossRefGoogle Scholar
  14. 14.
    G. Marrucci and N. Grizzuti, “Fast Flows of Concentrated Polymers: Prediction of the Tube Model on Chain Stretching,” Gazz. Chim. Ital., Vol. 118, 1988, p. 179Google Scholar
  15. 15.
    G. Marrucci and N. Grizzuti, Topics in Molecular Modeling of Entangled Polymer Rheology, Proc. 10 Int. Congr. Rheol., Sydney, 1988Google Scholar
  16. 16.
    K. Feigl, M. Lasso and C.H. Ottinger, “CONNFFESSIT Approach for Solving a Two-Dimensional Viscoelastic Fluid Problem,” Macromolecules, Vol. 28, 1995, p. 3261CrossRefGoogle Scholar
  17. 17.
    M. Laso and H.C. Ottinger, “Calculation of Viscoelastic Flow Using Molecular Models: The CONNFFESSIT Approach,” J. Non-Newtonian Fluid Mech., Vol. 47, 1993, p. 1MATHCrossRefGoogle Scholar
  18. 18.
    Y. Masubuchi, J. Takimoto, et al., “Brownian Simulations of a Network of Reptating Primitive Chains,” J. Chem. Phys., Vol. 115, 2001, p. 4387CrossRefGoogle Scholar
  19. 19.
    R.L.C. Akkermans and W.J. Briels, “Coarse Grained Interactions in Polymer Melts: A Variational Principle,” J. Chem. Phys., Vol. 115, 2001, p. 6210CrossRefGoogle Scholar
  20. 20.
    J.T. Padding and W.J. Briels, “Uncrossability Constrains in Mesoscopic Polymer Melts Simulations: Non-Rouse Behavior of C120H242,” J. Chem. Phys., Vol. 115, 2001, p. 2846CrossRefGoogle Scholar
  21. 21.
    J.T. Padding and W.J. Briels, “Time and Length Scales of Polymer Melts Studied by Coarse Grained Molecular Dynamics Simulations,” J. Chem. Phys., Vol. 117, 2002, p. 925CrossRefGoogle Scholar
  22. 22.
    A. Rakshit and R.C. Picu, “Coarse Grained Model of Entangled Polymer Melts,” J. Chem. Phys., Vol. 125, 2006, p. 164907CrossRefGoogle Scholar
  23. 23.
    I.M. Ward and J. Sweeney, The Mechanical Properties of Solid Polymers, Wiley, Chichester, 2004Google Scholar
  24. 24.
    R.G. Larson, Constitutive Equations for Polymer Melts and Solutions, Butterworths, Boston, 1987Google Scholar
  25. 25.
    J.D. Schieber, J. Neegaard, S. Gupta, “A Full Chain, Temporary Network Model with Sliplinks, Chain Length Fluctuations, Chain Connectivity and Chain Stretching,” J. Rheol., Vol. 47, 2003, p. 213CrossRefGoogle Scholar
  26. 26.
    T.A. Kavassalis and J. Noolandi, “New Theory of Entanglements and Dynamics in Dense Polymer Systems,” Macromolecules, Vol. 21, 1988, p. 2869CrossRefGoogle Scholar
  27. 27.
    D.W. Mead, R G. Larson, M. Doi, “A Molecular Theory for Fast Flows of Entangled Polymers,” Macromolecules, Vol. 31, 1998, p. 7895CrossRefGoogle Scholar
  28. 28.
    G. Ianniruberto and G. Marrucci, “Convective Orientational Renewal in Entangled Polymers,” J. Non-newtonian Fluids Mech., Vol. 95, 2000, p. 363MATHCrossRefGoogle Scholar
  29. 29.
    G. Ianniruberto and G. Marrucci, “A Simple Constitutive Equation for Entangled Polymers with Chain Stretch,” J. Rheol., Vol. 45, 2001, p. 1305CrossRefGoogle Scholar
  30. 30.
    R.S. Graham, A.E. Likhtman, T.C.B. McLeish, S.T. Milner, “Microscopic Theory of Linear, Entangled Polymer Chains Under Rapid Deformation Including Chain Stretch and Convective Constrain Release,” J. Rheol., Vol. 47, 2003, p. 1171CrossRefGoogle Scholar
  31. 31.
    G. Marrucci and G. Ianniruberto, “Flow-Induced Orientation and Stretching of Entangled Polymers,” Phil. Trans. R. Soc. Lond. A, Vol. 361, 2003, p. 677CrossRefGoogle Scholar
  32. 32.
    S.T. Milner and T.C.B. McLeish, “Arm-Length Dependence of Stress Relaxation in Star Polymer Melts,” Macromolecules, Vol. 31, 1998, p. 7479CrossRefGoogle Scholar
  33. 33.
    S.T. Milner, T.C.B. McLeish, R.N. Young, A. Hakiki, J.M. Johnson, “Dynamic Dilution, Constrain Release and Star-Linear Blends,” Macromolecules, Vol. 31, 1998, p. 9345CrossRefGoogle Scholar
  34. 34.
    E. Weinan, B. Engquist, X. Li, W. Ren, E. Vanden-Eijden, “The Heterogeneous Multiscale Method: A Review,” Comm. Math. Sci., Vol. 23, 2003, p. 432Google Scholar
  35. 35.
    Q. Zhang and L.A. Archer, “Optical Polarimetry and Mechanical Rheometry of PEO-Silica Dispersions,” Macromolecules, Vol. 37, 2004, p. 1928CrossRefGoogle Scholar
  36. 36.
    A.S. Sarvestani and R.C. Picu, “Network Model for Viscoelastic Behavior of Polymer Nanocomposites,” Polymer, Vol. 45, 2004, p. 7779CrossRefGoogle Scholar
  37. 37.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Wiley, New York, 1987Google Scholar
  38. 38.
    N. Phan Thien and R.I. Tanner, “New Constitutive Equation Derived from Network Theory,” J Non-Newtonian Fluid Mech., Vol. 2, 1977, p. 353MATHCrossRefGoogle Scholar
  39. 39.
    M.S. Ozmusul and R.C. Picu, “Structure of Polymers in the Vicinity of Curved Impenetrable Surfaces – The Athermal Case,” Polymer, Vol. 43, 2002, p. 4657Google Scholar
  40. 40.
    P.J. Dionne, R. Ozisik, R.C. Picu, ) “Structure and Dynamics of Polyethylene Nanocomposites,” Macromolecules, Vol. 38, 2005, p. 9351CrossRefGoogle Scholar
  41. 41.
    M.S. Ozmusul, R.C. Picu, S.S. Sternstein, S. Kumar, “Lattice Monte Carlo Simulations of Chain Conformations in Polymer Nanocomposites,” Macromolecules, Vol. 38, 2005, p. 4495CrossRefGoogle Scholar
  42. 42.
    P.J. Dionne, R.C. Picu, R. Ozisik, “Adsorption and Desorption Dynamics of Linear Polymer Chains to Spherical Nanoparticles: A Monte Carlo Investigation,” Macromolecules, Vol. 39, 2006, p. 3089CrossRefGoogle Scholar
  43. 43.
    H. Grabert, Projection Operator Techniques in Non-Equilibrium Statistical Mechanics, Springer, Berlin, 1982Google Scholar
  44. 44.
    A. Rakshit and R.C. Picu, “Coarse Grained Model of Entangled Polymer Melts,” J. Chem. Phys., Vol. 125, 2006, p. 164907CrossRefGoogle Scholar
  45. 45.
    D. Reith, M. Putz, F. Muller-Plathe, “Deriving Effective Mesoscale Potentials from Atomistic Simulations,” J. Comput. Chem., Vol. 24, 2003, p. 1624CrossRefGoogle Scholar
  46. 46.
    W. Paul, D.Y. Yoon, G.D. Smith, “Optimized United Atom Model for Simulations of Polymethylene Melts,” J. Chem. Phys., Vol. 103, 1995, p. 1702CrossRefGoogle Scholar
  47. 47.
    P.K. Depa and J.K. Maranas, “Speed up of Dynamic Observables in Coarse-Grained Molecular-Dynamics Simulations of Unentangled Polymers,” J. Chem. Phys., Vol. 123, 2005, p. 094901CrossRefGoogle Scholar
  48. 48.
    R. Zwanzig, “Ensemble Method in the T of Iirreversibility,” J. Chem. Phys., Vol. 33, 1960, p. 1338MathSciNetCrossRefGoogle Scholar
  49. 49.
    H. Mori, “Transport, Collective Motion and Browninan Motion,” Prog. Theor. Phys., Vol. 33, 1965, p. 423MATHCrossRefGoogle Scholar
  50. 50.
    P. Mazur and I. Oppenheim, “Molecular Theory of Brownian Motion,” Physica, Vol. 50, 1970, p. 241CrossRefGoogle Scholar
  51. 51.
    P. Espanol and I. Zuniga, “Force Autocorrelation Function in Brownian Motion Theory,” J. Chem. Phys., Vol. 98, 1993, p. 574CrossRefGoogle Scholar
  52. 52.
    F. Ould-Kaddour and D. Levesque, “Determination of the Friction Coefficient of a Brownian Particle by Molecular-Dynamics Simulation,” J. Chem. Phys., Vol. 118, 2003, p. 7888CrossRefGoogle Scholar
  53. 53.
    R.S. Graham, A.E. Likhtman, T.C.B. McLeish, S.T. Milner, “Microscopic Theory of Linear, Entangled Polymer Chains Under Rapid Deformation Including Chain Stretch and Convective Constraint Release,” J. Rheol., Vol. 47, 2003, p. 1171CrossRefGoogle Scholar
  54. 54.
    C.B. Barber, D.P. Dobkin, H.T. Huhdanpaa, “Quickhull Algorithm for Convex Hulls,” ACM Trans Math Softw, Vol. 22, 1996, p. 46MathSciNetCrossRefGoogle Scholar
  55. 55.
    R.C. Picu and A. Rakshit, “Coarse Grained Model of Diffusion in Entangled Bidisperse Polymer Melts,” J. Chem. Phys., Vol. 127, 2007, p. 144909CrossRefGoogle Scholar
  56. 56.
    P.F. Green and E.J. Kramer, “Tracer Diffusion Coefficient in Polystyrene,” Macromolecules, Vol. 19, 1986, p. 1108CrossRefGoogle Scholar
  57. 57.
    J. von Seggern, S. Klotz, and H.J. Cantow, “Reptation and Constraint Release in Linear Polymer Melts: An Experimental Study,” Macromolecules, Vol. 24, 1991, p. 3300CrossRefGoogle Scholar
  58. 58.
    A. Rakshit and R.C. Picu, “Coarse Grained Model of Entangled Polymer Melts in Non-Equilibrium,” Rheologica Acta DOI 10.1007/s00397-008-0298-8, 2008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of MechanicalAerospace and Nuclear Engineering, Rensselaer Polytechnic InstituteTroyUSA

Personalised recommendations