Skip to main content

Idiographic Data Analysis: Quantitative Methods—From Simple to Advanced

  • Chapter
  • First Online:
Dynamic Process Methodology in the Social and Developmental Sciences

Abstract

Time series analysis is a technique which can be used to model a large number of repeated measurements taken from a single case. This makes it a valuable approach for social scientists who are interested in idiographic data analysis. A fundamental time series model is the autoregressive moving average (ARMA) model. In this chapter we introduce the reader to the ARMA model and several extensions of it, including nonstationary models, multivariate models and nonlinear models. The focus is on the utility of these techniques for social scientists and we discuss existing applications within the social sciences to illustrate this. In the discussion we indicate how these techniques can be extended to handle multiple cases, and we briefly touch upon some valuable time series techniques which could not be treated in the current chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The autocovariance is the covariance between y t and y t + k , that is, E[(y t μ) (y t+k μ)], where m is the mean of the series. The lag k is the distance in time. When k  =  0, we obtain the variance of the series. The autocorrelation at lag k can be obtained by dividing the autocovariance at lag k by the variance of the series.

  2. 2.

    In some texts −q 1 is replaced by y 1, such that the minus sign is omitted. However, the above notation is more conventional, as it has some important advantages for the expression of particular characteristics of an MA process.

  3. 3.

    In practice, a process of infinite order is not appealing, as there will be more parameters to estimate than observations. However, in finite samples, the parameters beyond a certain lag will be insignificant and can be omitted from the model. The important issue is that there are no fundamental differences between these processes.

  4. 4.

    One can model the trend and the VARMA relations at the same time using a VARMAX model discussed below, but the point made here remains the same: One is modelling the deviations from the deterministic trend (rather then the trend itself) as a function of another variable.

  5. 5.

    A related technique, which is popular in speech recognition for instance, is the Hidden Markov model (HMM). The difference between the HMM and the MSAR model is that the former requires categorical observations, while the latter requires continuous observations. Moreover, while the MSAR model allows for autoregressive relationships between observations, the sequential dependency in the HMM is modelled exclusively by the hidden Markov process.

References

  • Andersson, G., Hägnebo, C., & Yardley, L. (1997). Stress and symptoms of Meniere’s disease: A time-series analysis. Journal of Psychosomatic Research, 43, 595–603.

    Article  PubMed  Google Scholar 

  • Andersson, G., & Yardley, L. (2000). Time-series analysis of the relationship between dizziness and stress. Scandinavian Journal of Psychology, 41, 49–54.

    Article  PubMed  Google Scholar 

  • Bollen, K. A., & Philips, D. P. (1982). Imitative suicides: A national study of the effects of television news stories. American Sociological Review, 47, 802–809.

    Article  Google Scholar 

  • Borsboom, D., Mellenbergh, G. J., & Van Heerden, J. (2003). The theoretical status of latent variables. Psychological Review, 110, 203–219.

    Article  PubMed  Google Scholar 

  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. San Francisco, CA: Holden-Day.

    Google Scholar 

  • Buck, R., & Morley, S. (2006). A daily process design of attention pain control stategies in the self-management of cancer pain. European Journal of Pain, 10, 385–398.

    Article  PubMed  Google Scholar 

  • Bye, E. K. (2007). Alcohol and violence: Use of possible confounders in a time-series analysis. Addiction, 102, 369–376.

    Article  PubMed  Google Scholar 

  • Cattell, R. B., Cattell, A. K. S., & Rhymer, R. D. (1947). P-technique demonstrated in determining psycho-physiological source traits in a normal individual. Psychometrika, 12(4), 267–288.

    Article  PubMed  Google Scholar 

  • Chatfield, C. (2004). The analysis of time series: An introduction (6th ed.). London: Chapman and Hall.

    Google Scholar 

  • Cohan, C. L., & Cole, S. W. (2002). Life course transitions and natural disaster: Marriaga, birth, and divorce following Hurricane Hugo. Journal of Family Psychology, 16, 16–25.

    Article  Google Scholar 

  • De Gooijer, J. G. (1998). On threshold moving-average models. Journal of Time Series Analysis, 19, 1–18.

    Article  Google Scholar 

  • De Gooijer, J. G. (2001). Cross-validation criteria for SETAR model selection. Journal of Time Series Analysis, 22, 267–281.

    Article  Google Scholar 

  • Delignières, D., Fortes, M., & Ninot, G. (2004). The fractal dynamics of self-esteem and physical self. Nonlinear Dynamics in Psychology and Life Sciences, 8, 479–510.

    Google Scholar 

  • Dickey, D. A., Jansen, D. W., & Thornton, D. L. (1991). A primer on cointegration with an application to money and income. Review: Federal Reserve Bank of St. Louis, 58–78.

    Google Scholar 

  • Durbin, J., & Koopman, S. J. (2001). Time series analysis by state space methods. New York: Oxford University Press.

    Google Scholar 

  • Durland, J. M., & McCurdy, T. H. (1994). Duration-dependent transitions in a Markov model of U.S. GPN growth. Journal of Business and Economic Statistics, 12, 279–288.

    Article  Google Scholar 

  • Du Toit, S. H. C., & Browne, M. W. (2001). The covariance structure of a vector ARMA time series. In R. Cudeck, S. Du Toit, & D. Sörbom (Eds.), Structural equation modeling: Present and future. A festschrift in honor of Karl Jöreskog (pp. 279–314). Scientific Software International.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, 50, 987–1007.

    Article  Google Scholar 

  • Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55, 251–276.

    Article  Google Scholar 

  • Fan, J., & Yao, Q. (2003). Nonlinear time series: Nonparameteric and parameteric methods. New York, NY: Springer-Verlag.

    Book  Google Scholar 

  • Ferrer, E., & Nesselroade, J. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360.

    Article  PubMed  Google Scholar 

  • Fortes, M., Delintnières, D., & Ninot, G. (2004). The dynamics of self-esteem and physical self: Between preservation and adaption. Quality and Quantity, 38, 735–751.

    Article  Google Scholar 

  • Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models. New York, NY: Springer.

    Google Scholar 

  • Gottman, J. M., Murray, J. D., Swanson, C. C., Tyson, R., & Swanson, K. R. (2002). The mathematics of marriage: Dynamic nonlinear models. Cambridge, MA: MIT Press.

    Google Scholar 

  • Granger, C. W. J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14, 227–238.

    Article  Google Scholar 

  • Granger, C. W. J., & Andersen, A. P. (1978). An introduction to bilinear time series models. Göttingen: Vandenhoeck und Ruprecht.

    Google Scholar 

  • Granger, C. W. J., & Ding, Z. (1996). Varieties of long memory models. Journal of Econometrics, 73, 61–77.

    Article  Google Scholar 

  • Granger, C. W. J., & Morris, M. J. (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society, 139, 246–257.

    Article  Google Scholar 

  • Haker, H., Lauber, C., Malti, T., & Rössler, W. (2004). Is there an impact of global and local disasters on psychiatric inpatient admissions? European Archive of Psychiatry and Clinical Neuroscience, 254, 330–334.

    Google Scholar 

  • Hamaker, E. L. (2005). Conditions for the equivalence of the autoregressive latent trajectory model and a latent growth curve model with autoregressive disturbances. Sociological Methods and Reasearch, 33, 404–418.

    Article  Google Scholar 

  • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2003). ARMA-based SEM when the number of time points T exceeds the number of cases N: Raw data maximum likelihood. Structural Equation Modeling, 10, 352–379.

    Article  Google Scholar 

  • Hamaker, E. L., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate time series analysis. Multivariate Behavioral Research, 40, 207–233.

    Article  Google Scholar 

  • Hamaker, E. L., Grasman, R. P. P. P., & Kamphuis, J.-H. (in press). Regime-switching models to study psychological processes. In P. C. M. Molenaar & K. Newell (Eds.). Learning and development: Individual pathways of change. Washington, DC: American Psychological Association.

    Google Scholar 

  • Hamaker, E. L., Nesselroade, J. R., & Molenaar, P. C. M. (2007). The integrated trait-state model. Journal of Research in Personality, 41, 295–315.

    Article  Google Scholar 

  • Hamaker, E. L., Zhang, Z., & Van der Maas, H. L. J. (in press). Using threshold autoregressive models to study dyadic interactions. Psychometrika.

    Google Scholar 

  • Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationairy time series and the business cycle. Econometrica, 57, 357–384.

    Article  Google Scholar 

  • Hamilton, J. D. (1994). Time series analysis. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: University Press.

    Google Scholar 

  • Hersen, M., & Barlow, D. H. (1976). Single-case experimental designs: Strategies for studying behavior change. New York, NY: Pergamon Press.

    Google Scholar 

  • Ichii, K. (1991). Measuring mutual causation: Effects of suicide news on suicides in Japan. Social Science Research, 20, 188–195.

    Article  Google Scholar 

  • Kim, C.-J. (1994). Dynamic linear models with Markov-switching. Journal of Econometrics, 60, 1–22.

    Article  Google Scholar 

  • Koop, G., Pesaran, M. H., & Potter, S. N. (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74, 119–147.

    Article  Google Scholar 

  • Lin, Z., & Brannigan, A. (2003). Advances in the anlysis of non-stationary time series: An illustration of coingration and error correction methods in research on crime and immigration. Quality and Quantity, 37, 151–168.

    Article  Google Scholar 

  • McCleary, R., Hay, R. A., Meidinger, E. E., McDowall, D., & Land, K. C. (1980). Applied time series analysis for the social sciences. Beverly Hills, CA: Sage Publications.

    Google Scholar 

  • Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202.

    Article  Google Scholar 

  • Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology—This time forever. Measurement: Interdisciplinary Research and Perspectives, 2, 201–218.

    Article  Google Scholar 

  • Molenaar, P. C. M., & Nesselroade, J. R. (2001). Rotation in the dynamic factor modeling of multivariate stationary time series. Psychometrika, 66, 99–107.

    Article  Google Scholar 

  • Nesselroade, J. R. (2001). Intraindividual variability in development within and between individuals. European Psychologist, 6, 187–193.

    Article  Google Scholar 

  • Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time-series. In D. M. Moskowitz & S. L. Hershberger (Eds.), Modeling intrainidividual variability with repeated measures data: Methods and applications. Mahwah, NJ: Lawrence Erlbaum Associations.

    Google Scholar 

  • Olfson, M., Marcus, S. C., & Druss, B. (2008). Effects of food and drug administration warnings on antidepressant use in a national sample. Archives of General Psychiatry, 65, 94–101.

    Article  PubMed  Google Scholar 

  • Oravecz, Z., Tuerlinckx, F., & Vandekerckhove, J. (in press). A hierarchical Ornstein-Uhlenbeck model for continuous repeated measurement data. Psychometrika.

    Google Scholar 

  • Oud, J. H. L. (2007). Continuous time modeling of reciprocal relationships in the cross-lagged panel design. In S. M. Boker & M. J. Wenger (Eds.), Data analytic techniques for dynamic systems in the social and behavioral sciences (pp. 87–129). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Peterson, B. S., & Leckman, J. F. (1998). The temporal dynamics of tics in Gilles de la Tourette syndrome. Biological Psychiatry, 44, 1337–1348.

    Article  PubMed  Google Scholar 

  • Razvodovsky, Y. E. (2007). Suicide and alcohol psychosis in Belarus 1970–2005. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 28, 61–66.

    Article  Google Scholar 

  • Rovine, M. J., & Walls, T. A. (2006). Multilevel autoregressive modeling of interindividual differenes in the stability of a process. In T. A. Walls & J. L. Schafer (Eds.), Models for intensive longitudinal data. New York, NY: Oxford University Press.

    Google Scholar 

  • Schmittmann, V. D., Dolan, C. V., & Van der Maas, H. L. J. (2005). Discrete latent Markov models for normally distributed response data. Multivariate Behavioral Research, 40, 461–488.

    Article  Google Scholar 

  • Schmitz, B., & Skinner, E. (1993). Perceived control, effort, and academic performance: Interindividual, intrainidividual, and multivariate time-series analyses. Journal of Personality and Social Psychology, 64, 1010–1028.

    Article  Google Scholar 

  • Sivo, S. A. (2001). Multiple indicator stationary time series models. Structural Equation Modeling, 8, 599–612.

    Article  Google Scholar 

  • Stroe-Kunold, E., & Werner, J. (2008). Modeling human dynamics by means of cointegration methodology. Methodology, 4, 113–131.

    Google Scholar 

  • Tong, H. (2001). A personal journey through time series in Biometrika. Biometrika, 88, 195–218.

    Article  Google Scholar 

  • Tong, H. (2003). Non-linear time series: A dynamic system approach. Oxford: Oxford Science Publications.

    Google Scholar 

  • Tong, H., & Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, B, 42, 245–292.

    Google Scholar 

  • Tsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the Americal Statistical Association, 93, 1188–1202.

    Article  Google Scholar 

  • Van der Maas, H. L. J., & Raijmakers, M. E. J. (2000). A phase transition model for mother-child interaction: Comment on Olthof et al., 2000. Infant and Child Development, 9, 75–83.

    Article  Google Scholar 

  • Van Rijn, P. W. (2008). Categorical time series in Psychological Measurement. Ph.D. thesis, University of Amsterdam.

    Google Scholar 

  • Van Rijn, P. W., Dolan, C. V., & Molenaar, P. C. M. (in press). Fitting autoregressive models to multivariate categorical time series.

    Google Scholar 

  • Wagenmakers, E.-J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f α noise in human cognition. Psychonomic Bulletin and Review, 11, 579–615.

    Article  PubMed  Google Scholar 

  • Warren, K. (2002). Thresholds and the abstinence violation effect: A nonlinear dynamic model of the behaviors of intellectually disabled sex offenders. Journal of Interpersonal Violence, 17 (1198–1217), 369–374.

    Google Scholar 

  • Warren, K., Hawkins, R. C., & Sprott, J. C. (2003). Substance abuse as a dynamical disease: Evidence and clinical implications of nonlinearity in a time series of daily alcohol consumption. Addictive Behaviors, 28, 369–374.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (NWO), VENI grant 451–05–012 awarded to Ellen L. Hamaker.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen L. Hamaker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hamaker, E., Dolan, C. (2009). Idiographic Data Analysis: Quantitative Methods—From Simple to Advanced. In: Valsiner, J., Molenaar, P., Lyra, M., Chaudhary, N. (eds) Dynamic Process Methodology in the Social and Developmental Sciences. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95922-1_9

Download citation

Publish with us

Policies and ethics