Advances in Dynamic Factor Analysis of Psychological Processes



The currently dominant, myopic approach to statistical analysis in psychology is based on analysis of inter-individual variation. Differences between subjects drawn from a population of subjects provide the information to make inferences about states of affairs at the population level. For instance, the factor structure of a personality test is determined by drawing a random sample of subjects from the population of interest, estimating the item correlation matrix by pooling across the scores of sampled subjects, and generalizing the results of the ensuing factor analysis to the population of subjects.


Covariance Function Multivariate Time Series Measurement Error Variance Dynamic Factor Model Neural Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Browne, M. W., & Nesselroade, J. R. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of ARMA time series models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Psychometrics: A festschrift to Roderick P. McDonald (pp. 415–452). Mahwah, NJ: Erlbaum.Google Scholar
  2. Browne, M. W., & Zhang, G. (2005). User’s Guide: DyFa: Dynamic factor analysis of lagged correlation matrices, version 2.03. [www document and computer program], from
  3. Borsboom, D. (2005). Measuring the mind: Conceptual issues in contemporary psychometrics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Brillinger, D. R. (1975). Time series: Data analysis and theory. New York: Holt, Rinehart & Winston.Google Scholar
  5. Browne, M. W., & Zhang, G. (2007). Developments in the factor analysis of individual time series. In R. C. MacCallum & R. Cudeck (Eds.), Factor analysis at 100: Historical developments and future directions. Mahwah, NJ: Erlbaum.Google Scholar
  6. Cattell, R. B. (1952). The three basic factor-analytic designs—Their interrelations and derivatives. Psychological Bulletin, 49, 499–520.CrossRefPubMedGoogle Scholar
  7. Cattell, R. B., Cattell, A. K. S., & Rhymer, R. D. (1947). P-technique demonstrated in determining psychophysiological source traits in a normal individual. Psychometrika, 12, 267–288.CrossRefPubMedGoogle Scholar
  8. Choe, G. H. (2005). Computational ergodic theory. Berlin: Springer-Verlag.Google Scholar
  9. De Groot, A. D. (1954). Scientific personality diagnosis. Acta Psychologica, 10, 220–241.CrossRefGoogle Scholar
  10. Ferrer, E. (2006). Application of dynamic factor analysis to affective processes in dyads. In A. Ong & M. van Dulmen (Eds.), Handbook of methods in positive psychology (pp. 41–58). Oxford: Oxford University Press.Google Scholar
  11. Ferrer, E., & Nesselroade, J. R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion, 3, 344–360.CrossRefPubMedGoogle Scholar
  12. Forni, M., Hallin, M., Lippi, F., & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Sta-tistical Association, 100, 830–840.CrossRefGoogle Scholar
  13. Grasman, R. P. P. P., Huizenga, H. M., Waldorp, L. J., Böcker, K. B. E., & Molenaar, P. C. M. (2005). Stochastic maximum likelihood mean and cross-spectrum modeling in neuron-magnetic source estimation. Digital Signal Processing, 15, 56–72.CrossRefGoogle Scholar
  14. Hamaker, E. J., Dolan, C. V., & Molenaar, P. C. M. (2005). Statistical modeling of the individual: Rationale and application of multivariate stationary time series analysis. Multivariate Behavioral Research, 40, 207–233.CrossRefGoogle Scholar
  15. Hamaker, E. J., Nesselroade, J. R., & Molenaar, P. C. M. (2007). The integrated state-space model. Journal of Research in Personality, 41, 295–315.CrossRefGoogle Scholar
  16. Hannan, E. J. (1970). Multiple time series. New York: Wiley.CrossRefGoogle Scholar
  17. Jones, C. J., & Nesselroade, J. R. (1990). Multivariate, replicated, single-subject, repeated measures design and P-technique factor analysis: A review of intra-individual change studies. Experimental Aging Research, 4, 171–183.Google Scholar
  18. Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28, 85–93.CrossRefPubMedGoogle Scholar
  19. Lebo, A. M., & Nesselroade, J. R. (1978). Intraindividual differences dimensions of mood change during pregnancy identified in five P-technique factor analyses. Journal of Research in Personality, 12, 205–224.CrossRefGoogle Scholar
  20. Molenaar, P. C. M. (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika, 50, 181–202.CrossRefGoogle Scholar
  21. Molenaar, P. C. M. (1987). Dynamic factor analysis in the frequency domain: Causal modeling of multivariate psychophysiological time series. Multivariate Behavioral Research, 22, 329–353.CrossRefGoogle Scholar
  22. Molenaar, P. C. M. (2004). A manifesto on psychology as idiographic science: Bringing the person back into scientific psychology, this time forever. Measurement, 2, 201–218.CrossRefGoogle Scholar
  23. Molenaar, P. C. M., Huizenga, H. M., & Nesselroade, J. R. (2003). The relationship between the structure of interindividual and intraindividual variability: A theoretical and empirical vindication of developmental systems theory. In U. M. Staudinger & U. Lindenberger (Eds.), Understanding human development: Dialogues with lifespan psychology (pp. 339–360). Dordrecht: Kluwer Academic Publishers.Google Scholar
  24. Molenaar, P. C. M., & Nesselroade, J. R. (2001). Rotation in the dynamic factor modeling of multivariate stationary time series. Psychometrika, 66, 99–107.CrossRefGoogle Scholar
  25. Molenaar, P. C. M., & Nesselroade, J. R. (2008). The recoverability of P-technique factor analysis (to appear in Multivariate Behavioral Research).Google Scholar
  26. Mumma, G. H. (2004). Validation of idiosyncratic cognitive schema in cognitive case formulations: An intraindividual idiographic approach. Psychological Assessment, 16, 211–230.CrossRefPubMedGoogle Scholar
  27. Nesselroade, J. R. (2007). Factoring at the individual level: Some matters for the second century of factor analysis. In R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 249–264). Mahwah, NJ: Erlbaum.Google Scholar
  28. Nesselroade, J. R., Gerstorf, D., Hardy, S. A., & Ram, N. (2007). Idiographic filters for psychological constructs. Measurement, 5, 217–235.CrossRefGoogle Scholar
  29. Nesselroade, J. R., McArdle, J. J., Aggen, S. H., & Meyers, J. M. (2002). Dynamic factor analysis models for representing process in multivariate time series. In D. S. Moskowitz & S. L. Hershberger (Eds.), Modeling intraindividual variability with repeated measures data: Methods and applications (pp. 235–265). Mahwah, NJ: Erlbaum.Google Scholar
  30. Sbarra, D. A., & Ferrer, E. (2006). The structure and process of emotional experience following nonmarital relationship dissolution: Dynamic factor analysis of love, anger, and sadness. Emotion, 6, 224–238.CrossRefPubMedGoogle Scholar
  31. Shifren, K., Hooker, K., Wood, P., & Nesselroade, J. R. (1997). Structure and variation of mood in individuals with Parkinson’s disease: A dynamic factor analysis. Psychology and Aging, 12, 328–339.CrossRefPubMedGoogle Scholar
  32. Stock, J. H., & Watson, M. W. (2005). Implications of dynamic factor models for VAR analysis. Mimeo: Princeton University.Google Scholar
  33. Wood, P., & Brwon, D. (1994). The study of intra-individual differences by means of dynamic factor models: Rationale, implementation, and interpretation. Psychological Bulletin, 116, 166–186.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Developmental PsychologyPennsylvania State UniversityPennsylvaniaUSA

Personalised recommendations