• Osamu NakatsukaEmail author
  • Shigeaki Zaima


Silicides are intermetallic compounds with Si and many metals form stable silicides. The interfacial reactions between various metals and Si have been investigated for many years and some silicides have been developed for contact and gate materials in Si ultra-large-scale-integrated (ULSI) applications [1–7].


Schottky Barrier Height Contact Resistivity Silicide Layer NiSi2 Phase NiSi Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Murarka, S. P.: Silicides for VLSI Applications. Academic Press, New York (1983)Google Scholar
  2. 2.
    Nicolet M.-A. and Lau, S. S.: VLSI Electronics, Microstructure Science. Eispruch, N. and Larrabee, G. (Eds.), Academic, New York, 6, 329 (1983)Google Scholar
  3. 3.
    Murarka, S. P.: Silicide thin films and their applications in microelectronics. Intermetallics 3, 173 (1995)CrossRefGoogle Scholar
  4. 4.
    Maex, K.: Silicides for Integrated Circuits: TiSi2 and CoSi2. Mater. Sci. Eng. Rev. R11, 53 (1993)Google Scholar
  5. 5.
    Maex, K. and van Rossum, M. (Eds.): Properties of Metal Silicides, INSPEC, London (1995)Google Scholar
  6. 6.
    Gambino J. P. and Colgan, E. G.: Silicides and ohmic contents. Mater. Chem. Phys. 52, 99 (1998)CrossRefGoogle Scholar
  7. 7.
    Zhang, S.-L. and Östling, M.: Metal silicides in CMOS technology: Past, present, and future trends. Critical Rev. Solid State. Mater. Sci. 28(1), 1 (2003)CrossRefGoogle Scholar
  8. 8.
    International Technology Roadmap for Semiconductors 2005 Edition, Semiconductor Industry Association (see the web page,
  9. 9.
    Yu. A. Y. C.: Electron tunneling and contact resistance of metalsilicon contact barriers. Solid-State Electron. 13, 239 (1970)CrossRefGoogle Scholar
  10. 10.
    Chang, C. Y.; Fang, Y. K.; and Sze. S. M.: Specific contact resistance of metal-semiconductors barriers. Solid-State Electron. 14, 541(1971)CrossRefGoogle Scholar
  11. 11.
    Nakatsuka, O.; Ashizawa, T.; Nakai, K.; Tobioka, A.; Sakai, A.; Zaima, S.; and Yasuda, Y.: Dependence of contact resistivity on impurity concentration in Co/Si systems. Appl. Surf. Sci. 159–160, 149 (2000)CrossRefGoogle Scholar
  12. 12.
    Zaima, S.; Nakatsuka, O.; Sakai, A.; Murota, J.; and Yasuda, Y.: Interfacial reaction and electrical properties in Ni/Si and Ni/SiGe(C) contacts. Appl. Surf. Sci. 224 (1–4), 215 (2004)CrossRefGoogle Scholar
  13. 13.
    Ma, Z. and Allen, L. H.: Kinetic mechanisms of the C49-to-C54 polymorphic transformation in titanium disilicide thin films: A microstructure-scaled nucleation-mode transition. Phys. Rev. B 49(19), 13501 (1994)CrossRefGoogle Scholar
  14. 14.
    Mann R. W. and Clevenger, L. A.: The C49 to C54 phase transformation in TiSi2 thin films. J. Electrochem. Soc. 141(5), 1347 (1994)CrossRefGoogle Scholar
  15. 15.
    Clevenger, L. A.; Harper, J. M. E.; Cabral, Jr., C.; Nobili C.; Ottaviani, G.; Mann, R.: Kinetic analysis of C49-TiSi2 and C54-TiSi2 formation at rapid thermal annealing rates. J. Appl. Phys. 72(10), 4978 (1992)CrossRefGoogle Scholar
  16. 16.
    van Houtum, H. J. W.; Raaijmakers, I. J. M. M.; and Menting, T. J. M.: Influence of grain size on the transformation temperature of C49 TiSi2 to C54 TiSi2. J. Appl. Phys. 61(8), 3116 (1987)CrossRefGoogle Scholar
  17. 17.
    Lasky, J. B.; Nakos, J. S.; Cain, O. J.; and Geiss, P. J.: Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and CoSi2. IEEE Trans. Electron. Dev. 38(2), 262 (1991)CrossRefGoogle Scholar
  18. 18.
    DiGregorio J. F. and Wall, R. N.: Small area versus narrow line width effects. On the C49 to C54 transformation of TiSi. IEEE Trans. Electron Dev. 47(2), 313 (2000).CrossRefGoogle Scholar
  19. 19.
    Ma, Z.; Allen L. H.; and Allman, D. D. J.: Effect of dimension scaling on the nucleation of C54 TiSi2. Thin Solid Films 253 (1–2), 451 (1994)CrossRefGoogle Scholar
  20. 20.
    Clevenger, L. A.; Roy, R. A.; Cabral, C. Jr.; Saenger, K. L.; Brauer, S.; Morales, G.; Ludwig, K. F. Jr.; Gifford, G.; Bucchignano, J.; Jordan-Sweet, J.; Dehaven, P.; and Stephenson, G. B.: A comparison of C54-TiSi2 formation in blanket and submicron gate structures using in situ x-ray diffraction during rapid thermal annealing. J. Mater. Res. 10(9), 2355 (1995)CrossRefGoogle Scholar
  21. 21.
    Maex, K.; Lauwers, A.; Besser, P.; Kondoh, E.; de Potter, M.; and Steegen, A.: Self-aligned CoSi2 for 0.18 mm and below. IEEE Trans. Electron Dev. 46(7), 1545 (1999)CrossRefGoogle Scholar
  22. 22.
    Lau, S. S.; Mayer, J. W.; and Tu, K. N.: Interactions in the Co/Si thin-film system. I. Kinetics. J. Appl. Phys. 49(7), 4005 (1978)Google Scholar
  23. 23.
    van Gurp, G. J.; van der Weg, W. F.; and Sigurd, D.: Interactions in the Co/Si thin-film system. II. Diffusion-marker experiments. J. Appl. Phys. 49(7), 4011 (1978)CrossRefGoogle Scholar
  24. 24.
    d’Heurle F. M. and Petersson, C. S.: Formation of thin films of CoSi2: Nucleation and diffusion mechanisms. Thin Solid Films 128, 283 (1985)CrossRefGoogle Scholar
  25. 25.
    Appelbaum, A. R.; Knoell, V.; and Murarka, S. P.: Study of cobalt-disilicide formation from cobalt monosilicide. J. Appl. Phys. 57(6), 1880 (1985)CrossRefGoogle Scholar
  26. 26.
    van Ommen, A. H.; Bulle-Lieuwma, C. W. T.; and Langereis, C.: Properties of CoSi2 formed on (001) Si. J. Appl. Phys. 64(5), 2706 (1988)CrossRefGoogle Scholar
  27. 27.
    Ohguro, T.; Saito, M.; Morifuji, E.; Yoshitomi, T.; Morimoto, T. T.; Momose, H. S.; Katsumata,Y.; and Iwai, H.: Thermal stability of CoSi2 film for CMOS salicide. IEEE Trans. Electron Dev. 47(11), 2208 (2000)CrossRefGoogle Scholar
  28. 28.
    Lauwers, A.; de Potter, M.; Chamirian, O.; Lindsay, R.; Demeurisse, C.; Vrancken, C.; and Maex, K.: Silicides for the 100-nm node and beyond: Co-silicide, Co(Ni)-silicide and Ni-silicide. Microelectron. Eng. 60, 221 (2002)CrossRefGoogle Scholar
  29. 29.
    Goto, K.-I.; Fushida, A.; Watanabe, J.; Sukegawa, T.; Tada, Y.; Nakamura, T.; Yamazaki, T.; and Sugii, T.: A new leakage mechanism of Co salicide and optimized process conditions [for CMOS]. IEEE Trans. Electron Dev. 46(1), 117 (1999)CrossRefGoogle Scholar
  30. 30.
    Ikegami, H.; Ikeda, H.; Zaima, S.; and Yasuda, Y.: Thermal stability of ultra-thin CoSi2 films on Si(100)-2 × 1 surfaces. Appl. Surf. Sci. 117–, 118 (2), 275 (1997)CrossRefGoogle Scholar
  31. 31.
    Tsuchiaki, M.; Hongo, C.; Takashima, A.; and Ohuchi, K.: Intrinsic junction leakage generated by cobalt in-diffusion during CoSi2 formation. Jpn. J. Appl. Phys. 41(4B) , 2437 (2002)CrossRefGoogle Scholar
  32. 32.
    Morimoto, T.; Ohguro, T.; Sasaki, H.; Iimura, T.; Kunishima, I.; Suguro, K.; Katakabe, I.; Nakajima, H.; Tsuchiaki, M.; Ono, M.; Katsumata, Y.; and Iwai, H.: Self-aligned nickel-mono-silicide technology for high-speed deep submicrometer logic CMOS ULSI. IEEE Trans. Electron Dev. 42(5), 915 (1995)CrossRefGoogle Scholar
  33. 33.
    Lauwers, A.; Steegen, A.; de Potter, M.; Lindsay, R.; Satta, A.; Bender, H.; and Maex, K.: Materials aspects, electrical performance, and scalability of Ni silicide towards sub-0.13 mm technologies. J. Vac. Sci. Technol. B 19(6), 2026 (2001)CrossRefGoogle Scholar
  34. 34.
    Tsuchiya, Y.; Tobioka, A.; Nakatsuka, O.; Ikeda, H.; Sakai, A.; Zaima, S.; and Yasuda, Y.: Electrical properties and solid-phase reactions in Ni/Si(100) contacts. Jpn. J. Appl. Phys. 41(4B), 2450 (2002)CrossRefGoogle Scholar
  35. 35.
    Lavoie, C.; d’Heurle, F. M.; Detavernier, C.; and Cabral, C.: Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 70(2–4), 144 (2003)CrossRefGoogle Scholar
  36. 36.
    Okubo, K.; Tsuchiya, Y.; Nakatsuka, O.; Sakai, A.; Zaima, S.; and Yasuda, Y.: Influence of structural variation of Ni Silicide thin films on electrical property for contact materials. Jpn. J. Appl. Phys. 43(4B), 1896 (2004)CrossRefGoogle Scholar
  37. 37.
    Mangelinck, D.; Dai, J. Y.; Pan, J. S.; and Lahiri, S. K.: Enhancement of thermal stability of NiSi films on (100)Si and (111)Si by Pt addition. Appl. Phys. Lett. 75(12), 1736 (1999)CrossRefGoogle Scholar
  38. 38.
    Liu, J. F.; Chen, H. B.; Feng, J. Y.; and Zhu, J.: Improvement of the thermal stability of NiSi films by using a thin Pt interlayer. Appl. Phys. Lett. 77(14), 2177 (2000)CrossRefGoogle Scholar
  39. 39.
    Lee, P. S.; Pey, K. L.; Mangelinck, D.; Ding, J.; Chi, D. Z.; and Chan, L.: New salicidation technology with Ni(Pt) alloy for MOSFETs. IEEE Electron Dev. Lett. 22(12), 568 (2001)CrossRefGoogle Scholar
  40. 40.
    Tsai, C. J.; Cheng, P. L.; and Yu, K. H.: Stress evolution of Ni/Pd/Si reaction system under isochronal annealing. Thin Solid Films 365(1), 72 (2000)CrossRefGoogle Scholar
  41. 41.
    Thompson, R. D.; Tu, K. N.; Angillelo, J.; Delage, S.; and Iyer, S. S.: Interfacial reaction between Ni and MBE grown SiGe alloy. J. Electrochem. Soc. 135(12), 3161–, 3163 (1988)CrossRefGoogle Scholar
  42. 42.
    Luo, J.-S.; Lin, W.-T.; Cheng, C. Y.; and Tsai, W. C.: Pulsed KrF laser annealing of Ni/Si0.76Ge0.24 films. J. Appl. Phys. 82(7), 3621(1997).CrossRefGoogle Scholar
  43. 43.
    Jarmar, T.; Seger, J.; Ericson, F.; Mangelinck, D.; Smith, U.; and Zhang, S.-L.: Morphological and phase stability of nickel–germanosilicide on Si1–xGex under thermal stress. J. Appl. Phys. 92(12), 7193 (2002)CrossRefGoogle Scholar
  44. 44.
    Nakatsuka, O.; Okubo, K.; Sakai, A.; Ogawa, M.; Yasuda, Y.; and Zaima, S.: Improvement in NiSi/Si contact properties with C-implantation. Microelectron. Eng. 82(3–4), 479 (2005)CrossRefGoogle Scholar
  45. 45.
    Cheng, L. W.; Cheng, S. L.; Chen, J. Y.; Chen, L. J.; and Tsui, B. Y.: Effects of nitrogen ion implantation on the formation of nickel silicide contacts on shallow junctions. Thin Solid Films 355–356, 412 (1999)CrossRefGoogle Scholar
  46. 46.
    Lee, P. S.; Pey, K. L.; Mangelinck, D.; Ding, J.; Wee, A. T. S.; and Chan, L.: New salicidation technology with Ni(Pt) alloy for MOSFETs. IEEE Electron Dev. Lett. 21(11), 568 (2001)CrossRefGoogle Scholar
  47. 47.
    Choi, C.-J.; Ok, Y.-W.; Hullavarad, S. S.; Seong, T.-Y.; Lee, K.-M.; Lee, J.-H.; and Park, Y.-J.: Effects of hydrogen implantation on the structural and electrical properties of nickel silicide. J. Electronchem. Soc. 149(9), G517 (2002)CrossRefGoogle Scholar
  48. 48.
    Detaverniera, C. and Lavoie, C.: Influence of Pt addition on the texture of NiSi on Si(001). Appl. Phys. Lett. 84(18), 3549 (2004)CrossRefGoogle Scholar
  49. 49.
    Qin, M.; Poon, V. M. C.; and Ho, S. C. H.: Investigation of polycrystalline nickel silicide films as a gate material. J. Electrochem. Soc. 148(5), G271 (2001)CrossRefGoogle Scholar
  50. 50.
    Maszara, W. P.: Fully silicided metal gates for high-performance CMOS technology: A review. J. Electrochem. Soc., 152(7), G550 (2005)CrossRefGoogle Scholar
  51. 51.
    Sim, J. H.; Wen, H. C.; Lu, J. P.; and Kwong, D. L.: Dual work function metal gates using full nickel silicidation of doped poly-Si. IEEE Trans. Electron Dev. Lett. 24(10), 631 (2003)CrossRefGoogle Scholar
  52. 52.
    Kittl, J. A.; Lauwers, A.; Pawlak, M. A.; van Dal, M. J. H.; Veloso, A.; Anil, K. G.; Pourtois, G.; Demeurisse, C.; Schram, T.; Brijs, B.; de Potter, M.; Vrancken, C.; and Maex, K.: Ni fully silicided gates for 45 nm CMOS applications. Microelectron. Eng. 82(3–4), 441 (2005)CrossRefGoogle Scholar
  53. 53.
    Van deWalle C.G. and Martin, R.: Theoretical calculations of heterojunction discontinuities in the Si/Ge system. Phys. Rev. B 34(8), 5621 (1986)CrossRefGoogle Scholar
  54. 54.
    Zaima, S. and Yasuda, Y.: Study of reaction and electrical properties at Ti/SiGe/Si(100) contacts for ultralarge scale integrated applications. J. Vac. Sci. Tech. B 16(5), 2623 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Crystalline Materials ScienceGraduate School of Engineering, Nagoya University, Furo-choChikusa-kuJapan

Personalised recommendations