Wafer-Level 3D Integration for ULSI Interconnects

  • Ronald J. GutmannEmail author
  • Jian-Qiang Lu


Three-dimensional (3D) integration in a system-in-a-package (SiP) implementation (packaging-based 3D) is becoming increasingly used in consumer, computer, and communication applications where form factor is critical. In particular, the hand-held market for a growing myriad of voice, data, messaging, and imaging products is enabled by packaging-based 3D integration (i.e., stacking and connecting individual chips). The key drivers are for increased memory capacity and for heterogeneous integration of different IC technologies and functions.


Wafer Bonding Epitaxial Lateral Overgrowth Signal Processing Electronic Heterogeneous Integration Vertical Interconnectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lu, J.-Q.; Cale, T. S.; and Gutmann, R. J.: Wafer-level three-dimensional hyper-integration technology using dielectric adhesive wafer bonding. In Materials for Information Technology: Devices, Interconnects and Packaging. Zschech, E.; Whelan, C.; and Mikolajick, T. (eds.), Springer-Verlag, 386 (2005)Google Scholar
  2. 2.
    Meindl, J. D.; Venkatesan, R.; Davis, J. A.; Joyner, J. W.; Naeemi, A.; Zarkesh-Ha, P.; Bakir, M.; Mulé, T.; Kohl, P. A.; and K. P. Martin: Interconnecting Device Opportunities for Gigascale Integration (GSI). IEEE 2001 International Electronic Devices Meeting (2001 IEDM), 525 (2001)Google Scholar
  3. 3.
    Das, S.; Fan, A.; Chen, K.-N.; Tan, C. S.; Checka, N.; and Reif, R.: Technology, performance, and computer-aided design of three-dimensional integrated circuits. In Proceedings of the International Symposium on Physical Design (ISPD’04), 108 (2004)Google Scholar
  4. 4.
    Walker, J.: Market transition to 3d integration and packaging: density, design, and decisions. In International Conference on 3D Architectures for Semiconductor Integration and Packaging, Tempe, AZ (2005)Google Scholar
  5. 5.
    Carson, F.: 3D SiP: established and emerging trends. In Preconference Symposium of the 3rd International Conference on 3D Architectures for Semiconductor Integration and Packaging, Burlingame, CA (2006)Google Scholar
  6. 6.
    Tessler, T.: Recent development in wafer level packaging. In 3rd IC Packaging Technology Exposition and Conference, Japan (2002)Google Scholar
  7. 7.
    Savastiouk, S., Siniaguine, O., and Korczynski, E.: 3D Wafer level packaging. In 2000 International Conference on High-Density Interconnect and Systems Packaging (2000)Google Scholar
  8. 8.
    Morrow, P.; Park, C.-M.; Ramanathan, S.; Kobrinsky, M. J.; and Harmes, M.: Three-dimensional wafer stacking Via Cu-Cu bonding integrated with 65-nm Strained-Si/Low-k CMOS technology. IEEE Electron Device Lett. 27(5), 335 (2006)CrossRefGoogle Scholar
  9. 9.
    Patti, R.: Three-dimensional integrated circuits and the future of system-on-chip designs. Proc. IEEE 94(6), 1214 (2006)CrossRefGoogle Scholar
  10. 10.
    Lu, J.-Q.; Jindal, A.; Kwon, Y.; McMahon, J. J.; Lee, K.-W.; Kraft, R. P.; Altemus, B.; Cheng, D.; Eisenbraun, E.; Cale, T. S.; and Gutmann, R. J.; 3D System-on-a-chip using dielectric glue bonding and Cu Damascene inter-wafer interconnects. In Thin Film Materials, Processes, and Reliability, Mathad, S. et al. (Eds.), ECS Proc. PV 2003–13, 381–389 (2003)Google Scholar
  11. 11.
    McMahon, J. J.; Lu, J.-Q.; and Gutmann, R. J.: Wafer bonding of damascene-patterned metal/adhesive redistribution layers for via-first three-dimensional (3D) interconnect. In IEEE 55th Electronic Components and Technology Conference (ECTC 2005), 331 (2005)Google Scholar
  12. 12.
    Guarini, K. W.; Topol, A. W.; Ieong, M. R.; Yu, Shi, L.; Newport, M. R.; Frank, D. J.; Singh, D. V.; Cohen, G. M.; Nitta, S. V.; Boyd, D. C.; O’Neil, P. A.; Tempest, S. L.; Pogge, H. B.; Purushothaman, S.; and Haensch, W. E.: Electrical integrity of state-of-the-art 0.13 μm SOI CMOS devices and circuits transferred for three-dimensional (3D) integrated circuit (IC) fabrication. In Digest of International Electron Device Meeting, 943 (2002)Google Scholar
  13. 13.
    Burns, J.; Aull, B.; Chen, C.; Chen, C.-L.; Keast, C.; Knecht, C. J.; Suntharalingam, V.; Warner, K.; Wyatt, W. P.; and Yost, D.-R.: A wafer-scale 3-D circuit integration technology. IEEE Trans. Electron Devices 53(10), 2507 (2006)CrossRefGoogle Scholar
  14. 14.
    Ramm, P.; Bonfert, D.; Gieser, Haufe, H. J.; Iberl, F.; Klumpp, A.; Kux, A.; Wieland, R.: InterChip via technology for vertical system integration. 2001 IEEE International Interconnect Technology Conference (IITC), 160 (2001)Google Scholar
  15. 15.
    Lee, K. W.; Nakamura, T.; One, T.; Yamada, Y.; Mizukusa, T.; Hasimoto, H.; Park, K. T.; Kurino, H.; and Koyanagi, M.: Three-dimensional shared memory fabricated using wafer stacking technology. In IEEE 2000 International Electron Devices Meeting (2000 IEDM), 165 (2000)Google Scholar
  16. 16.
    Markunas, B.: 3D Architectures for semiconductor integration and packaging. In International Conference on 3D Architectures for Semiconductor Integration and Packaging, Burlingame, CA (2004)Google Scholar
  17. 17.
    Gann, K.: Neo-stacking technology. High Density Interconnect Magazine 2 (1999)Google Scholar
  18. 18.
    Goldstein, H.: Packages go vertical. IEEE Spectr. 38(8), 46 (2001)CrossRefGoogle Scholar
  19. 19.
    Lowton, G.: The lowdown on high-rise chips. In Computer magazine, IEEE Comput. Soc., 24 (2004)Google Scholar
  20. 20.
    Souri, S. J. and Saraswat, K. C.: Interconnect performance modeling for 3D integrated circuits with multiple Si layers. IEEE International Interconnect Technology Conference (IITC 1999), 24 (1999)Google Scholar
  21. 21.
    Zeng, A. Y.; Lu,J.-Q.; Rose, K.; and Gutmann, R. J.: First-order performance prediction of cache memory with wafer-level 3D Integration. IEEE Design Test Comput. 22(6), 548 (2005)CrossRefGoogle Scholar
  22. 22.
    Gutmann, R. J.; Zeng, A. Y.; Devarajan, S.; Lu J.-Q.; and Rose, K.: Wafer-level three-dimensional monolithic integration for intelligent wireless terminals. J. Semiconductor Technol. Sci. 4(3), 196–203 (2004)Google Scholar
  23. 23.
    Lu, J.-Q.; Devarajan, S.; Zeng, A. Y.; Rose, K.; and Gutmann, R. J.: Die-on-wafer and wafer level three-dimensional (3D) integration of heterogeneous IC technologies for RF-microwave-millimeter applications. In Materials, Integration and Packaging Issues for High-Frequency Devices II. Cho, Y. S.; Shiffler, D.; Ranall, C. A.; Tilmans, H. A. C.; and Tsurumi T. (eds.) MRS Proc. 833, 229–234 (2004)Google Scholar
  24. 24.
    Lu, J.-Q.; Sun, J.; Giuliano D.; and Gutmann, R. J.: 3D architecture for power delivery to microprocessors and ASICs. In Proceedings CD of the 3rd International Conference on 3D Architectures for Semiconductor Integration and Packaging, Burlingame, CA (2006)Google Scholar
  25. 25.
    Sun, J.; Lu, J.-Q.; Giuliano, D.; Chow, T. P.; Gutmann, R. J.: 3D power delivery for microprocessors and high-performance ASICs. 22nd Annual IEEE Applied Power Electronics Conference and Exposition (APEC 2007), 127 (2007)Google Scholar
  26. 26.
    Suntharalingam, V.; Berger, R.; Burns, J.; Chen, C.; Keast, C.; Knecht, J.; Lambert, R.; Newcomb, K.; O’Mara, D.; Rathman, D.; Shaver, D.; Soares, A.; Stevenson, C.; Tyrell, B.; Warner, K.; Wheeler, B.; Yost, D.; and Young D.: Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology. In Proceedings of the IEEE International Solid-State Circuits Conference, 356 (2005)Google Scholar
  27. 27.
    Temple, D.; Bower, C. A.; Malta, D.; Robinson, J. E.; Coffman, P. R.; Skokan M. R.; and Welch, T. B.: High density 3-D integration technology for massively parallel signal processing in advanced infrared focal plane array sensors. In Digest of 2006 IEEE International Electron Device Meeting (2006 IEDM), 143 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.RPILow Center for Industrial InnovationTroyUSA

Personalised recommendations